
Parallel Quantum-inspired Genetic Algorithm for
Combinatorial Optimization Problem

Kuk-Hyun Han Kui-Hong Park Chi-Ho Lee Jong-Hwan Kim

Dept. of Electrical Engineering and Computer Science,
Korea Advanced Institute of Science and Technology(KAIST),

373-1, Kusong-dong Yusong-gu, Taejon, 305-701, Republic of Korea
Email: �khhan,khpark,chiho,johkim�@vivaldi.kaist.ac.kr

Abstract- This paper proposes a new parallel evolu-
tionary algorithm called parallel quantum-inspired ge-
netic algorithm (PQGA). Quantum-inspired genetic al-
gorithm(QGA) is based on the concept and principles of
quantum computing such as qubits and superposition of
states. Instead of binary, numeric, or symbolic represen-
tation, by adopting qubit chromosome as a representa-
tion, QGA can represent a linear superposition of solu-
tions due to its probabilistic representation. QGA is suit-
able for parallel structure because of rapid convergence
and good global search capability. That is, QGA is able
to possess the two characteristics of exploration and ex-
ploitation, simultaneously. The effectiveness and the ap-
plicability of PQGA are demonstrated by experimental
results on the knapsack problem, which is a well-known
combinatorial optimization problem. The results show
that PQGA is superior to QGA as well as other conven-
tional genetic algorithms.

1 Introduction

Evolutionary algorithms(EAs) are principally stochastic
searches and optimization methods based on the principles of
natural biological evolution. Compared to the traditional op-
timization methods, such as calculus-based and enumerative
stragegies, EAs are robust, global and can be generally ap-
plied without recourse to domain-specific heuristics. But the
characteristics of population diversity and selective pressure
are not easy to be implemented in EAs such as evolution-
ary programming(EP), evolution strategies(ES) and genetic
algorithm(GA), simultaneously. As selective pressure is in-
creased, the search focuses on the top individuals in the pop-
ulation, but because of this exploitation genetic diversity is
lost. The reason is that the representations of EAs are defined
using deterministic values.

The new evolutionary algorithm which uses stochastic
representation was proposed in [1]. QGA are characterized
by rapid convergence and global search capability, simultane-
ously. QGA is based on the concept and principles of quan-
tum computing such as qubits and a linear superposition of
states. One individual of QGA can represent many states at
the same time, and there are weak relationships between in-
dividuals since each individual is determined by current best
solution and its probability, that is, the history of individual,

up to date. Because of this reason, QGA is suitable for paral-
lel structure.

Recently, parallel evolutionary algorithms (PEAs) have
been used to slove more difficult problems which need a big-
ger population. This results in higher computational cost. The
basic motivation behind many early studies of PEAs was to
reduce the processing time needed to reach an acceptable so-
lution [2]. This was accomplished by implementing EAs on
different parallel architecture. In addition, it was noted that in
some cases the PEAs found better solutions than comparably
sized serial EAs. There are several approaches to parallelize
the serial EAs [2, 3, 4, 5].

This paper offers a new parallel evolutionary algorithm
called parallel quantum-inspired genetic algorithm (PQGA).
Especially, a coarse-grained parallel scheme was applied to
PQGA. PQGA can reduce the computational time as com-
pared with QGA.

This paper is organized as follows. Section 2 and 3 de-
scribe the new evolutionary algorithm, QGA and the parallel
quantum-inspired genetic algorithm, respectively. Section 4
contains a description of the experiment with GAs, QGAs
and PQGAs for knapsack problems for comparison purpose.
Section 5 summarizes and analyzes the experimental results.
Concluding remarks follow in Section 6.

2 Quantum-inspired Genetic Algorithm (QGA)

QGA is based on the concepts of qubits and superposition of
states of quantum mechanics. The smallest unit of informa-
tion stored in a two-state quantum computer is called a quan-
tum bit or qubit [6]. A qubit may be in the ‘1’ state, in the ‘0’
state, or in any superposition of the two. The state of a qubit
can be represented as

��� � ����� ����� (1)

where � and � are complex numbers that specify the proba-
bility amplitudes of the corresponding states. ���� gives the
probability that the qubit will be found in ‘0’ state and ��� �
gives the probability that the qubit will be found in the ‘1’
state. Normalization of the state to unity guarantees

���� � ���� � �� (2)

If there is a system of �-qubits, the system can contain in-
formation of �� states. However, in the act of observing a

jjaeone
Proceedings of the 2001 IEEE Congress on Evolutionary Computation Seoul, Korea 匀 May 27-30, 2001

jjaeone
0-7803-6657-3/01/$10.00 © 2001 IEEE

jjaeone
1422

quantum state, it collapses to a single state [7].

2.1 Representation

It is possible to use a number of different representations to
encode the solutions onto chromosomes in evolutionary algo-
rithm. The classical representations can be broadly classified
as: binary, numeric, and symbolic [8]. QGA uses a novel rep-
resentation that is based on the concept of qubits. One qubit
is defined with a pair of complex numbers, ��� ��, as�

�
�

�
�

which is characterized by (1) and (2). And an �-qubits rep-
resentation is defined as�

��
��

���� ��
��

���� � � �
� � �

���� ��
��

�
� (3)

where ������ ����� � �, � � �� �� � � � ��. This representation
has the advantage that it is able to represent a superposition
of states. If there is, for instance, a three-qubits system with
three pairs of amplitudes such as�

��
�
��
�

�����
��
�

���
�

�����
�

��
�

�

�
� (4)

the state of the system can be represented as

�

	
������

�

	
����� � �

	
����� �

�

	
����� (5)

�
�

	
������

�

	
����� � �

	
����� �

�

	
�����

The above result means that the probabilities to represent the
state �����, �����, �����, �����, �����, �����, �����, and �����
are �

��
, �

��
, �

��
, �

��
, �

��
, �

��
, �

��
, and �

��
, respectively. By con-

sequence, the three-qubits system of (4) contains information
of eight states.

Evolutionary computing with qubit representation has a
better characteristic of diversity than classical approaches,
since it can represent superposition of states. Only one qubit
chromosome such as (4) is enough to represent eight states,
but in classical representation at least eight chromosomes,
�����, �����, �����, �����, �����, �����, �����, and �����
are needed. Convergence can be also obtained with the qubit
representation. As ����� or ����� approaches to � or �, the
qubit chromosome converges to a single state and the prop-
erty of diversity disappears gradually. That is, the qubit rep-
resentation is able to possess the two characteristics of explo-
ration and exploitation, simultaneously.

2.2 QGA

The structure of QGA is described in the following.

procedure QGA
begin

�� �
initialize ����
make 	 ��� by observing���� states
evaluate 	 ���
store the best solution among 	 ���
while (not termination-condition) do
begin
�� �� �
make 	 ��� by observing���� �� states
evaluate 	 ���
update���� using quantum gates
���
store the best solution among 	 ���

end
end

QGA is a probabilistic algorithm which is similar to genetic
algorithm. QGA maintains a population of qubit chromo-
somes, ���� � ���

�
���

�
� � � � ����� at generation �, where � is

the size of population, and ��� is a qubit chromosome defined
as

��� �

�
��
�

��
�

���� ��
�

��
�

���� � � �
� � �

���� ���
���

�
� (6)

where� is the number of qubits, i.e., the string length of the
qubit chromosome, and � � �� �� � � � � �.

In the step of ‘initialize ����,’ ��� and ��� , � � �� �� � � � ��,
of all ��� , � � �� �� � � � � �, in ���� are initialized with ��

�
.

It means that one qubit chromosome, ��
� ���� represents the

linear superposition of all possible states with the same prob-
ability:

���
�

�
� �

�
��

���

��
��

�
���

where
� is the �-th state represented by the binary string
����� � � ����. ��, � � �� �� � � � ��, is either � or �. The
next step makes a set of binary solutions, 	 ���, by observing
���� states, where 	 ��� � ���

�
���

�
� � � � ����� at generation �.

One binary solution, ��� , � � �� �� � � � � �, is a binary string
of length �, and is formed by selecting each bit using the
probability of qubit, either ���� �� or ���� ��, � � �� �� � � � ��, of
��� . Each solution ��� is evaluated to give some measure of
its fitness. The initial best solution is then selected and stored
among the binary solutions, 	 ���.

In the while loop, one more step, ‘update ����,’ is in-
cluded to have fitter states of the qubit chromosomes. A set of
binary solutions, 	 ���, is formed by observing������ states
as with the procedure described before, and each binary so-
lution is evaluated to give the fitness value. In the next step,
‘update ����,’ a set of qubit chromosomes ���� is updated
by applying some appropriate quantum gates�
���, which is

�Quantum gates are reversible gates and can be represented as unitary
operators acting on the qubit basis states: ��� � ���, where �� is the
hermitian adjoint of � . There are several quantum gates, such as NOT gate,
Controlled NOT gate, Rotation gate, Hadamard gate, etc.[6].

jjaeone
1423

formed by using the binary solutions 	 ��� and the best stored
solution. The appropriate quantum gates can be designed in
compliance with practical problems. Rotation gates such as

��� �

�
��
��� �
�����

����� ��
���

�
� (7)

where � is a rotation angle, will be used for knapsack prob-
lems in the next section. This step makes the qubit chromo-
somes converge to the fitter states. The best solution among
	 ��� is selected in the next step, and if the solution is fitter
than the best stored solution, the stored solution is replaced
by this best solution. The binary solutions 	 ��� are discarded
at the end of the loop.

In QGA, the population size, i.e., the number of qubit
chromosomes is always kept constant. This is due to con-
servation of qubits based on quantum computing. QGA with
the qubit representation can have better convergence with di-
versity than conventional GAs which have fixed � and � in-
formation.

3 Parallel Quantum-inspired Genetic Algo-
rithm (PQGA)

To find more optimized solution in shorter computing time,
parallelization of EAs is indispensable. The basic motivation
behind many early studies of PEAs was to reduce the pro-
cessing time needed to reach an acceptable solution. This
was accomplished by implementing EAs on different parallel
architectures. Using many processes shortens the computing
time. In the experiments reported in [3], Using � processers
shortens the computation time by a factor whose value is lim-
ited to �. In the shifting balancing theory proposed by Sewall
Wright [3], the evolution speed of small subpopulations with
loose connection is faster than that of large population. In ad-
dition, it was noted that in some cases the PEAs found better
solutions than comparably sized serial EAs, because the mi-
gration of individuals between subpopulations introduces the
possibility of global search.

The parallelization of EAs has been implemented in sev-
eral ways, like globally PEAs, coarse-grained PEAs and fine-
grained PEAs. These are classification according to the con-
nection topology of multi-processors [2, 3]. Also, the hybrid
structure can be applied for parallelization [9]. The coarse-
grained parallel scheme is considered here.

The important characteristics of coarse-grained algorithms
are the use of few relatively large demes and the introduc-
tion of a migration operator. The whole population is divided
into some number of populations, each subpopulation evolves
independently, and the exchange of individuals, called mi-
gration, occurs after some generations. This scheme can be
easily implemented and even if there is no parallel computer
available, it is easy to simulate one with a network of work-
station or even in a single processor machine. Utilizing mi-
gration and using some number of demes prevent converg-
ing to local optima. The performance of CGPEAs mostly

depends on the migration rate, migration period and the se-
lection of migrated individuals. The methods of migration
scheme are random migration, improvement insertion, worst
deletion, best migration and crossover migration.

One individual of QGA can represent many states at the
same time, and there are weak relationships during individu-
als since each individual is determined by current best solu-
tion and its probability. Because of this characteristic, QGA
is better than EAs such as EP, GA and ES for implementation
of a parallel architecture. The best migration scheme was
considered for the method of migration in this paper.

4 Experiment

The knapsack problem, a kind of combinatorial optimization
problem, is used to investigate the performance of PQGA.
The knapsack problem can be described as selecting from
among various items those items which are most profitable,
given that the knapsack has limited capacity. The 0-1 knap-
sack problem is described as: given a set of � items and a
knapsack, select a subset of the items so as to maximize the
profit ����:

���� �
��
���

�����

subject to
��
���

���� 	 ��

where � � ��� � � ����, �� is � or �, �� is the profit of item
�, �� is the weight of item �, and � is the capacity of the
knapsack.

In this section, some conventional GA methods used in the
0-1 knapsack problem are described, and this is followed by
the detailed algorithms of QGA and PQGA for the knapsack
problem.

4.1 Conventional GA methods

Three types of conventional algorithms are described and
tested: algorithms based on penalty functions, algorithms
based on repair methods, and algorithm based on decoder
[10].

In all the algorithms based on penalty functions, a binary
string of the length � represents a chromosome � for the
problem. The profit ���� of each string is determined as

���� �

��
���

���� � 	������

where 	����� is a penalty function. There are many possible
strategies for assigning the penalty function [11, 12]. Two
types of penalties are considered, such as logarithmic penalty
and linear penalty:

	������ � ���
�
�� � � �

��

��� ���� � ��� �

jjaeone
1424

	������ � � �
��

��� ���� � �� �

where � is �����������������.
In algorithms based on repair methods, the profit ���� of

each string is determined as

���� �

��
���

���
�
��

where �� is a repaired vector of the original vector �. Orig-
inal chromosomes are replaced with a �� probability in the
experiment. The two repair algorithms considered here dif-
fer only in selection procedure, which chooses an item for
removal from the knapsack:

���� (random repair): The selection procedure selects a ran-
dom element from the knapsack.
���� (greedy repair): All items in the knapsack are sorted
in the decreasing order of their profit to weight ratios. The
selection procedure always chooses the last item for deletion.

A possible decoder for the knapsack problem is based on
an integer representation. Each chromosome is a vector of
� integers; the �-th component of the vector is an integer in
the range from � to � � � � �. The ordinal representation
references a list � of items; a vector is decoded by selecting
appropriate item from the current list.

���� (random decoding): The build procedure creates a list
� of items such that the order of items on the list corresponds
to the order of items in the input file which is random.

4.2 QGA for the knapsack problem

The algorithm of QGA for the knapsack problem is based
on the structure of QGA proposed and it contains a repair
algorithm. The algorithm can be written as follows:

procedure QGA
begin

�� �
initialize ����
make 	 ��� by observing���� states
repair 	 ���
evaluate 	 ���
store the best solution � among 	 ���
while (� � ��� !") do
begin
�� �� �
make 	 ��� by observing���� �� states
repair 	 ���
evaluate 	 ���
update ����
store the best solution � among 	 ���

end
end

A qubit string of length� represents a linear superposition of
solutions as in (6) to the problem. The length of a qubit string
is the same as the number of items. The �-th item can be se-
lected for the knapsack with probability �� ��� or �� � ������.
Thus, a binary string of length � is formed from the qubit
string. For every bit in the binary string, we generate a ran-
dom number # from the range ������; if # $ �� ���, we set the
bit of the binary string. The binary string � �

� , � � �� �� � � � � �,
of 	 ��� represents a �-th solution to the problem. For nota-
tional simplicity, � is used instead of ��� in the following. The
�-th item is selected for the knapsack iff �� � �, where �� is
the �-th bit of �.

The repair algorithm of QGA for the knapsack problem is
implemented as follows:

procedure repair (x)
begin

knapsack-overfilled� false
if
��

��� ���� $ �
then knapsack-overfilled� true
while (knapsack-overfilled) do
begin

select an �-th item from the knapsack
�� � �
if
��

��� ���� 	 �
then knapsack-overfilled� false

end
while (not knapsack-overfilled) do
begin

select a �-th item from the knapsack
�� � �
if
��

��� ���� $ �
then knapsack-overfilled� true

end
�� � �

end

The profit of a binary solution � is evaluated by
��

��� ����,
and it is used to find the best solution � after the update of � � ,
� � �� �� � � � � �. A qubit chromosome �� is updated by using
the rotation gate
��� of (7) in this algorithm. The �-th qubit
value ���� ��� is updated as�

���
���

�
�

�
��
���� �
������

������ ��
����

� �
��
��

�
� (8)

In this knapsack problem �� is given as %���������. The
parameters used are shown in Table 1. For example, if the
condition, ����
 ����, is satisfied and �� and &� are � and
�, respectively, we can set the value of ��� as �����' and
%������ as ��,��, or � according to the condition of � ��� so
as to increase the probability of the state ���. The value of�� �
has an effect on the speed of convergence, but if it is too big,
the solutions may diverge or have a premature convergence to
a local optimum. The sign %������ determines the direction
of convergence to a global optimum. The lookup table can be

jjaeone
1425

%������
�� &� ���� ��� ���� ���� �� ��

 ���� $ � � � � � � �
� � �()%� � � � � �
� � �#*� � � � � �
� � �()%� � � � � �
� � �#*� ����' �� �� �� �
� � �()%� ����' �� �� �� �
� � �#*� �����' �� �� � ��
� � �()%� �����' �� �� � ��
� � �#*� �����' �� �� � ��

Table 1: Lookup table of ��, where ���� is the profit, %������
is the sign of ��, and &� and �� are the �-th bits of the best
solution � and the binary solution �, respectively.

used as a strategy for convergence. This update procedure
can be described as follows:

procedure update (q)
begin

�� �
while (� � �) do
begin
�� �� �
determine �� with the lookup table
obtain ����� �

�
�� as:

���� �
�
��
�
�
���� ��� ���

�

end
�� ��

end

The update procedure can be implemented using various
methods with appropriate quantum gates. It depends on a
given problem.

4.3 PQGA for the knapsack problem

The structure of each processor was same as the procedure
of QGA as mentioned previously. The coarse-grained paral-
lel scheme and the best migration method were used in these
experiments. In QGA, the best solution migrated from other
processor cannot cause rapid convergence to possibly local
optimum, since QGA has a probabilistic representation in-
cluding the meaning of history of evolved individual. To re-
duce the load of communication between each processors,
new structures were used as Figure 1 and 2. Figure 1 and
2 show the connection structures for 4 processors and 16 pro-
cessors, respectively.

Sub
Population

Sub
Population

Sub
Population

Sub
Population

Figure 1: The connection structure for 4 processors.

Sub
Population

Sub
Population

Sub
Population

Sub
Population

Sub
Population

Sub
Population

Sub
Population

Sub
Population

Sub
Population

Sub
Population

Sub
Population

Sub
Population

Sub
Population

Sub
Population

Sub
Population

Sub
Population

Figure 2: The connection structure for 16 processors.

5 Results

In all experiments strongly correlated sets of unsorted data
were considered:

�� � *���+#�), #(�-+���� ���
�� � �� � ��

Average knapsack capacity given by:

� �
�

�

��
���

��

was used. The population size considered for all the six con-
ventional genetic algorithms (CGAs) was equal to ���. As
in [10], probabilities of crossover and mutation were fixed as
0.05 and 0.01, respectively. The population size of QGA1
was equal to ��, and the population size of QGA2 was equal
to 	�, this being the only difference between QGA1 and
QGA2. The number of processors of PQGA1 and PQGA2
were equal to 	 and ��, and the subpopulation sizes in each
processor of PQGA1 and PQGA2 were equal to �� and
,
respectively. The migration period of PQGA1 is ��� gen-
erations. In PQGA2, there are 4 sub-groups in the overall
structure, and each sub-group includes 4 processors. There
are 3 subpopulations in each processor. The migration be-
tween the processors occurs every ��� generations, and the

jjaeone
1426

. of CGAs QGAs PQGAs
items 	��� 	��� ���� ���� ���� 	��� � �� � �� 	� �� 	� ��

b. 562.1 597.6 558.9 560.5 512.3 592.7 612.5 612.7 612.7 612.7
100 profits m. 549.2 587.7 547.2 545.3 502.1 586.8 604.1 608.8 612.7 612.5

w. 540.0 572.6 537.1 536.8 493.5 577.6 592.7 597.7 612.7 607.6
��%���#*�� 1.537 1.544 1.293 1.302 12.97 1.556 0.408 2.354 0.596 1.112

b. 1377.7 1455.0 1383.1 1352.7 1179.7 1454.0 1497.3 1510.2 1520.2 1515.2
250 profits m. 1341.3 1439.0 1343.1 1337.4 1159.4 1441.7 1473.2 1495.6 1506.1 1513.3

w. 1321.1 1415.2 1319.5 1322.5 1140.7 1430.1 1433.9 1474.6 1485.2 1494.6
��%���#*�� 3.642 3.739 3.040 3.116 69.29 3.754 1.566 11.93 2.292 2.441

b. 2712.4 2839.6 2706.8 2686.3 2255.1 2839.1 2903.2 2926.0 2965.6 3021.3
500 profits m. 2668.4 2804.5 2661.0 2657.4 2220.9 2805.1 2858.7 2898.9 2912.3 2997.9

w. 2642.8 2766.3 2626.6 2628.1 2195.7 2781.0 2821.1 2856.1 2882.1 2865.8
��%���#*�� 9.211 9.274 7.913 8.142 270.8 9.138 4.429 34.37 7.143 6.614

Table 2: Experimental results of the knapsack problem: the maximum number of generations 1000, the number of runs 30.
	��� means the algorithm implemented by 	��� and ����, and &�, ��, and �� means &�%�, ��(�, and �+#%�, respectively.
��%���#*�� represents the elapsed time per one run.

migration between the sub-groups takes place every ��� gen-
erations. As a performance measure of the algorithm we col-
lected the best solution found within 1000 generations over
30 runs, and we checked the elapsed time per one run. A
Pentium-III ����/0 was used, running Visual C++ 6.0.

Table 2 shows the experimental results of the knapsack
problems with 100, 250, and 500 items. In the case of 100
items, PQGA yielded superior results as compared to all the
other CGAs and QGAs. The CGA designed by using a linear
penalty function and random repair algorithm outperformed
all other CGAs, but is behind QGAs as well as PQGAs in
performance. The results show that PQGAs and QGAs per-
form well in spite of small size of population. Judging from
the results, PQGAs and QGAs can search solutions near the
optimum within a short time as compared to CGAs, and al-
though the total population number of PQGAs is equal to that
of QGA2 (population size 	�), PQGAs outperformed QGA2
in best solution and computation time. In the cases of 250 and
500 items, the experimental results again demonstrate the su-
periority of PQGAs.

Figure 3 shows the progress of the mean of best profits and
the mean of average profits of population found by PQGA1,
PQGA2, QGA1, QGA2 and CGA over 30 runs for 100, 250,
and 500 items. PQGAs performs better than QGAs and CGAs
in terms of convergence rate and final results. Initially, QGA2
including 	� populations shows the fastest convergence rate.
PQGAs shows a slower convergence rate than QGAs due to
its small population number in one processor. But in ��� gen-
erations, PQGAs outpace QGA2. It is caused by the best mi-
gration between processors. Especillay, in the cases of ���
items and ��� items, PQGA2 outperforms PQGA1 in best so-
lution. The reason is that the structure of PQGA2 can increase
the population diversity. PQGAs’ final results are better than
QGA’s and CGA’s in 1000 generations.

The tendency of convergence rate can be shown clearly
in the results of the mean of average profits of population.

In the beginning, convergence rates of all the algorithms in-
crease. But CGA maintains a nearly constant profit due to its
premature convergence, while QGA approaches towards the
neighborhood of global optima with a constant convergence
rate. Especially, after migrations, PQGAs have a faster con-
vergence rate to find out global optima.

The experimental results demonstrate the effectiveness
and the applicability of PQGA. Especially, figure 3 shows ex-
cellent global search ability and superiority of convergence
ability of PQGA.

6 Conclusions

This paper proposed a new parallel evolutionary algorithm,
PQGA with a quantum representation and a coarse-grained
parallel scheme. Since QGA is based on the principles of
quantum computing such as concepts of qubits and superposi-
tion of states, it can represent a linear superposition of states,
and there is no need to include many individuals. QGA has
excellent ability of global search due to its diversity caused
by the probabilistic representation, and it can approach better
solutions than CGA’s in a short time. These characteristics
of QGA are suitable for parallel structure. Also, the migra-
tion in PQGA can improve the capability of exploitation and
exploration. The knapsack problem, a kind of combinatorial
optimization problem, is used to discuss the performance of
PQGA. It was shown that PQGA’s convergence and global
search ability are superior to QGA’s and CGA’s. The experi-
mental results demonstrate the effectiveness and the applica-
bility of PQGA.

jjaeone
1427

0 200 400 600 800 1000 1200
530

540

550

560

570

580

590

600

610

620
Best profits

Best of PQGA2
Best of PQGA1
Best of QGA2

Best of QGA1

Best of CGA

0 200 400 600 800 1000 1200
530

540

550

560

570

580

590

600

610

620
Best profits

Best of PQGA2
Best of PQGA1
Best of QGA2

Best of QGA1

Best of CGA

(a) best profits (100 items)

0 200 400 600 800 1000 1200
1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1520
Best profits

Best of PQGA2
Best of PQGA1

Best of QGA2

Best of QGA1

Best of CGA

0 200 400 600 800 1000 1200
1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1520
Best profits

Best of PQGA2
Best of PQGA1

Best of QGA2

Best of QGA1

Best of CGA

(c) best profits (250 items)

0 200 400 600 800 1000 1200
2600

2650

2700

2750

2800

2850

2900

2950

3000
Best profits

Best of PQGA2

Best of PQGA1

Best of QGA2

Best of QGA1

Best of CGA

0 200 400 600 800 1000 1200
2600

2650

2700

2750

2800

2850

2900

2950

3000
Best profits

Best of PQGA2

Best of PQGA1

Best of QGA2

Best of QGA1

Best of CGA

(e) best profits (500 items)

0 200 400 600 800 1000 1200
480

500

520

540

560

580

600

620
Average profits

Average of PQGA2

Average of PQGA1

Average of QGA2

Average of QGA1

Average of CGA

0 200 400 600 800 1000 1200
480

500

520

540

560

580

600

620
Average profits

Average of PQGA2

Average of PQGA1

Average of QGA2

Average of QGA1

Average of CGA

(b) average profits (100 items)

0 200 400 600 800 1000 1200
1200

1250

1300

1350

1400

1450

1500

1550
Average profits

Average of PQGA2

Average of PQGA1

Average of QGA2

Average of QGA1

Average of CGA

0 200 400 600 800 1000 1200
1200

1250

1300

1350

1400

1450

1500

1550
Average profits

Average of PQGA2

Average of PQGA1

Average of QGA2

Average of QGA1

Average of CGA

(d) average profits (250 items)

0 200 400 600 800 1000 1200
2500

2550

2600

2650

2700

2750

2800

2850

2900

2950

3000
Average profits

Average of PQGA2

Average of PQGA1

Average of QGA2

Average of QGA1

Average of CGA

0 200 400 600 800 1000 1200
2500

2550

2600

2650

2700

2750

2800

2850

2900

2950

3000
Average profits

Average of PQGA2

Average of PQGA1

Average of QGA2

Average of QGA1

Average of CGA

(f) average profits (500 items)

Figure 3: Comparison of PQGAs, QGAs and CGAs on the knapsack problem. The vertical axis is the profit value of knapsack,
and the horizontal axis is the number of generations. (a), (c), (e) show the best profits, and (b), (d), (f) show the average profits.
Both were averaged over 30 runs.

jjaeone
1422

jjaeone
1428

References

[1] K.-H. Han and J.-H. Kim, ”Genetic Quantum Algo-
rithm and its Application to Combinatorial Optimiza-
tion Problem,” in Proceedings of the 2000 Congress on
Evolutionary Computation, pp. 1354-1360, July, 2000.

[2] E. C.-Paz, ”Designing scalable multi-population paral-
lel genetic algorithms,” in IlliGAL Report No. 98009,
Illinois Genetic Algorithms Laboratory, 1998.

[3] T. C. Belding, ”The distributed genetic algorithm revis-
ited,” in Proceedings of the Sixth International Con-
ference on Genetic Algorithms, pp. 114-121, Morgan
Kaufmann, 1995.

[4] V. S. Gordon and D. Whitley, ”Serial and parallel ge-
netic algorithms as function optimizers,” in Proceedings
of the Fifth International Conference on Genetic Algo-
rithms, pp. 177-183, Morgan Kaufmann, 1993.

[5] S. Baluja, ”Structure and performance of fine-grain par-
allelism in genetic search,” in Proceedings of the Fifth
International Conference on Genetic Algorithms, pp.
155-162, Morgan Kaufmann, 1993.

[6] T. Hey, ”Quantum computing: an introduction,” Com-
puting & Control Engineering Journal, pp. 105-112,
Jun 1999.

[7] A. Narayanan, “Quantum computing for beginners,”
in Proceedings of the 1999 Congress on Evolutionary
Computation, pp. 2231-2238, Jul 1999.

[8] R. Hinterding, ”Representation, Constraint Satisfaction
and the Knapsack Problem,” in Proceedings of the
1999 Congress on Evolutionary Computation, pp. 1286-
1292, Jul 1999.

[9] C.-H. Lee, S.-H. Park and J.-H. Kim, ”Topology and
Migration Policy of Fine-grained Parallel Evolutionary
Algorithms for Numerical Optimization,” in Proceed-
ings of the 2000 Congress on Evolutionary Computa-
tion, pp. 70-76, July, 2000.

[10] Z. Michalewicz, Genetic Algorithms + Data Structures
= Evolution Programs, Springer-Verlag, 3rd, revised
and extended edition, 1999.

[11] J.-H. Kim and H. Myung, “Evolutionary Programming
Techniques for Constrained Optimization Problems,”
IEEE Transactions on Evolutionary Computation, Vol.
1, No. 2, pp. 129-140, Jul 1997.

[12] X. Yao, Evolutionary Computation: Theory and Appli-
cations, World Scientific, Singapore, 1999.

jjaeone
1429

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

