
On Setting the Parameters of Quantum-inspired Evolutionary Algorithm
for Practical Applications

Kuk-Hyun Han Jong-Hwan Kim

Department of Electrical Engineering and Computer Science,
Korea Advanced Institute of Science and Technology (KAIST),

373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea
{khhan, johkim}@rit.kaist.ac.kr

Abstract- In this paper, some guidelines for setting
the parameters of quantum-inspired evolutionary algo-
rithm (QEA) are presented. QEA is based on the con-
cept and principles of quantum computing, such as a
quantum bit and superposition of states. However, QEA
is not a quantum algorithm, but a novel evolutionary al-
gorithm. Like other evolutionary algorithms, QEA is
also characterized by the representation of the individ-
ual, the evaluation function, and the population dynam-
ics. From recent research on the knapsack problem, the
results of QEA are better than those of CGA (conven-
tional GA). Although the performance of QEA is excel-
lent, there is relatively little or no research on the ef-
fects of different settings for its parameters. This paper
describes some guidelines for setting these parameters.
The guidelines are drawn up based on extensive exper-
iments carried out for a class of combinatorial and nu-
merical optimization problems. Through the guidelines,
the performance of QEA can be maximized.

1 Introduction

Evolutionary algorithms (EAs) are principally a stochastic
search and optimization method based on the principles of
natural biological evolution. Compared to traditional op-
timization methods, such as calculus-based and enumera-
tive strategies, EAs are robust, global, and may be applied
generally without recourse to domain-specific heuristics, al-
though their performance may be affected by these heuris-
tics. Overviews of current state of the art in the field of
evolutionary computation are given by Fogel [1] and Bäck
[2].

Quantum-inspired evolutionary algorithm (QEA) re-
cently proposed in [3] can treat the balance between explo-
ration and exploitation more easily when compared to con-
ventional GAs (CGAs). Also, QEA can explore the search
space with a smaller number of individuals and exploit the
search space for a global solution within a short span of
time. QEA is based on the concept and principles of quan-
tum computing1, such as the quantum bit and the superpo-

1Quantum computing is a research area which includes quantum me-
chanical computers and quantum algorithms. Quantum mechanical com-
puters were proposed in the early 1980s [4], [5] and their description was
formalized in the late 1980s [6]. Many efforts on quantum computers have
progressed actively since the early 1990s because these computers were
shown to be more powerful than digital computers on various specialized
problems. There are well-known quantum algorithms such as Deutsch-
Jozsa algorithm [7], Simon’s algorithm [8], Shor’s quantum factoring al-
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Figure 1: Quantum-inspired evolutionary algorithm (QEA)

sition of states. However, QEA is not a quantum algorithm,
but a novel evolutionary algorithm as shown in Figure 1.
Like any other EAs, QEA is also characterized by the repre-
sentation of the individual, the evaluation function, and the
population dynamics.

Unlike other research areas, there has been relatively lit-
tle work done in applying quantum computing to evolu-
tionary algorithms. Quantum-inspired computing was in-
troduced in [13]. In [14], a modified crossover operator
which includes the concept of interference was introduced.
In [15], a probabilistic representation and a novel population
dynamics inspired by quantum computing were proposed.
In [16], the applicability of QEA to a parallel scheme, par-
ticularly, PC clustering, was verified successfully. In [3], the
basic structure of QEA and its characteristics were formu-
lated and analyzed, respectively. According to [3], the re-
sults (tested on the knapsack problem) of QEA were proved
to be better than those of CGA. In [17], a QEA-based disk
allocation method (QDM) was introduced. According to
the results, the average query response times of QDM were
equal to or less than those of DAGA (disk allocation meth-
ods using GA), and the convergence speed of QDM was
3.2-11.3 times faster than that of DAGA. In [18], QEA was
applied to a decision boundary optimization for face verifi-
cation. The proposed face verification system was tested by
face and non-face images extracted from AR face database.
Compared to the conventional PCA (principal components
analysis) method, improved results were achieved both in
terms of the face verification rate and false alarm rate.

gorithm [9], and Grover’s database search algorithm [10]. In particular,
since the difficulty of the factoring problem is crucial for the security of
the RSA cryptosystem [11] which is in widespread use today, interest in
quantum computing is increasing [12].
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Figure 2: Overall structure of QEA

This paper proposes some guidelines for setting the pa-
rameters of QEA. These guidelines are drawn up based on
empirical results. The effects of different settings for the
parameters are examined from several experiments on opti-
mization problems.

This paper is organized as follows. Section 2 describes
the QEA. Section 3 verifies the rotation angle selection for
Q-gate. Section 4 examines the effects of different paramet-
ric settings of QEA. Concluding remarks follow in Section
5.

2 QEA

2.1 Representation

QEA uses a novel Q-bit representation which is a kind of
probabilistic representation. A Q-bit is defined as the small-
est unit of information in QEA, which is defined as a pair
of numbers,(α, β), where|α|2 + |β|2 = 1. |α|2 gives the
probability that the Q-bit will be found in the ‘0’ state and
|β|2 gives the probability that the Q-bit will be found in the
‘1’ state. A Q-bit may be in the ‘1’ state, in the ‘0’ state, or
in a linear superposition of the two states.

A Q-bit individual as a string ofmQ-bits is defined as
[

α1

β1

∣∣∣∣
α2

β2

∣∣∣∣
· · ·
· · ·

∣∣∣∣
αm

βm

]
, (1)

where|αi|2 + |βi|2 = 1, i = 1, 2, · · · ,m.
Q-bit representation has the advantage that it is able to

represent a linear superposition of states probabilistically. If
there is, for instance, a three-Q-bit system with three pairs of
amplitudes, the system can contain the information of eight
states. The Q-bit representation has a better characteristic
of population diversity than other representations.

2.2 Basic structure of QEA

QEA is a probabilistic algorithm similar to other evolution-
ary algorithms. QEA, however, maintains a population of
Q-bit individuals,Q(t) = {qt

1,q
t
2, · · · ,qt

n} at generationt,
wheren is the size of population, andqt

j , j = 1, 2, · · · , n,
is a Q-bit individual defined as (1).

Procedure QEA
begin

t ← 0
i) initialize Q(t)
ii) makeP (t) by observing the states ofQ(t)
iii) evaluateP (t)
iv) store the best solutions amongP (t) into B(t)

while (not termination condition)do
begin

t ← t + 1
v) makeP (t) by observing the states ofQ(t− 1)
vi) evaluateP (t)
vii) updateQ(t) using Q-gates
viii) store the best solutions among

B(t− 1) andP (t) into B(t)
ix) store the best solutionb amongB(t)
x) if (global migration condition)

then migrateb to B(t) globally
xi) else if(local migration condition)

then migratebt
j in B(t) to B(t) locally

end
end

Figure 3: Procedure QEA.

Figure 2 shows the overall structure of QEA and Figure
3 shows the procedure QEA that can be explained in the
following manner.

i) In the step of ‘initialize Q(t),’ α0
i and β0

i , i =
1, 2, · · · , m, of all q0

j , j = 1, 2, · · · , n, are initialized with
1√
2
. It means that one Q-bit individualq0

j represents the
linear superposition of all the possible states with the same
probability.

ii) This step makes binary solutions inP (0) by observ-
ing the states ofQ(0), whereP (0) = {x0

1,x
0
2, · · · ,x0

n} at
generationt = 0. One binary solutionx0

j , j = 1, 2, · · · , n,
is a binary string of lengthm, which is formed by selecting
either0 or 1 for each bit using the probability, either|α0

i |2
or |β0

i |2, i = 1, 2, · · · ,m, of q0
j , respectively.

iii) Each binary solutionx0
j is evaluated to give a mea-

sure of its fitness.
iv) The initial best solutions are then selected among the

binary solutionsP (0), and stored intoB(0), whereB(0) =
{b0

1,b
0
2, · · · ,b0

n}, andb0
j is the same asx0

j at the initial
generation.

v, vi) In the while loop, binary solutions inP (t) are
formed by observing the states ofQ(t − 1) as in step ii),
and each binary solution is evaluated for the fitness value. It
should be noted thatxt

j in P (t) can be formed by multiple
observations ofqt−1

j in Q(t− 1).
vii) In this step, Q-bit individuals inQ(t) are updated by

applying Q-gates defined as a variation operator of QEA, by
which operation the updated Q-bit should satisfy the nor-
malization condition,|α′|2 + |β′|2 = 1, whereα′ andβ′ are
the values of the updated Q-bit. The following rotation gate



is used as a basic Q-gate in QEA, such as

U(∆θi) =
[

cos(∆θi) − sin(∆θi)
sin(∆θi) cos(∆θi)

]
, (2)

where∆θi, i = 1, 2, · · · ,m, is a rotation angle of each Q-bit
toward either0 or 1 state depending on its sign.∆θi should
be designed in compliance with the application problem.

viii, ix) The best solutions amongB(t− 1) andP (t) are
selected and stored intoB(t), and if the best solution stored
in B(t) is better fitted than the stored best solutionb, the
stored solutionb is replaced by the new one.

x) If the global migration condition is satisfied, the best
solutionb is migrated toB(t) globally.

xi) If the local migration condition is satisfied, the best
one in a local group inB(t) is migrated to others in the same
local group.

Until the termination condition is satisfied, QEA is run-
ning in thewhile loop.

3 Rotation angles for Q-gate

In [3], Table 1 was suggested to guide the selection of the
angle parameters for the rotation gate given in (2). It was
suggested and verified to set a positive numberp for θ3, a
negative numbern for θ5, and0 for the rest of the angle
parameters inΘ of Table 1 for the knapsack problem. In
particular, the empirical results showed thatθ2, θ4, θ6, and
θ8 could be set to any one among0, p, andn. However, it
is questionable whether it is possible to useΘ of Table 1 for
other problems.

xi bi f(x) < f(b) ∆θi

0 0 true θ1 = 0
0 0 false θ2 = ∗
0 1 true θ3 = p
0 1 false θ4 = ∗
1 0 true θ5 = n
1 0 false θ6 = ∗
1 1 true θ7 = 0
1 1 false θ8 = ∗

Table 1: Lookup table of∆θi suggested from [3], where
f(·) is the fitness, andbi andxi are theith bits of the best
solutionb and the binary solutionx, respectively.∗ is one
of (0, p, andn), wherep is a positive number andn is a
negative number.

Three numerical problems are considered to show that
the results onΘ can be applied to other optimization prob-
lems. To deal with numerical problems, real values of the
variables should be encoded as binary strings since QEA
uses a Q-bit representation to generate a binary bit. The
three numerical problems are as follows:
Problem 1: Maximizef1(x) = 100−(100(x2

1−x2)2+(1−
x1)2), where−2.048 ≤ xi ≤ 2.048. The global maximum
value is100 at(x1, x2) = (1, 1). This function is a modified
version of De Jong function F2.
Problem 2: Maximizef2(x) = −∑5

i=1 integer(xi),
where−5.12 ≤ xi ≤ 5.12. The global maximum value is

30 for all −5.12 ≤ xi < −5.0. This function is a modified
version of De Jong function F3.
Problem 3: Maximize f3(x) = − 1

1
K +

∑25

j=1
g−1

j
(x1,x2)

+

100.98, wheregj(x1, x2) = cj +
∑2

i=1(xi − aij)6, where
−65.536 ≤ xi ≤ 65.536, K = 500, cj = j, and[aij ] =
[−32 −16 0 16 32 −32 −16 · · · 0 16 32
−32 −32 −32 −32 −32 −16 −16 · · · 32 32 32

]
.

The global maximum value is100 at (x1, x2) =
(−32,−32). This function is a modified version of De Jong
function F5.

Each variable was encoded as a 25-bit string. The pop-
ulation size was1. The maximum number of generations
was1, 000. The values of0, 0.005π, and−0.005π were
used for each of the eight angle parameters. The experi-
ments of Problems1, 2, and3, respectively, carried out step
by step to find proper signs(0, p, n) of the angle parame-
ters. The results onθ2, θ4, θ6, andθ8, that is, the cases
which f(x) < f(b) is false, were worthwhile to mention
that the values ofθ2, θ4, θ6, andθ8 had little effect on the
performance. These are the same results of the knapsack
problem as shown in [3]. In particular, the set ofΘ for find-
ing the maximum value of each problem was obtained from
the experimental results as follows:

f1: [0 ∗ p ∗ 0 ∗ n ∗]T , [0 ∗ p ∗ 0 ∗ 0 ∗]T , [0 ∗ p ∗ n ∗ 0 ∗]T ,
[p ∗ p ∗ n ∗ 0 ∗]T , and[p ∗ p ∗ n ∗ n ∗]T ;

f2: [0 ∗ p ∗ n ∗ 0 ∗]T , [0 ∗ p ∗ n ∗ n ∗]T , [0 ∗ n ∗ n ∗ 0 ∗]T ,
[0 ∗ n ∗ n ∗ n ∗]T , [0 ∗ 0 ∗ n ∗ 0 ∗]T , [0 ∗ 0 ∗ n ∗ n ∗]T ,
[n ∗ n ∗ n ∗ 0 ∗]T , and[n ∗ n ∗ n ∗ n ∗]T ;

f3: [0 ∗ p ∗ n ∗ 0 ∗]T , [0 ∗ p ∗ n ∗ n ∗]T , [p ∗ p ∗ n ∗ 0 ∗]T ,
and[p ∗ p ∗ n ∗ n ∗]T .

Table 2 shows the average frequencies of0, p, andn for
eachθi in Θ from the above results. From the table,[0 ∗
p ∗ n ∗ 0 ∗]T has a higher frequency and is included in each
set ofΘ for Problems 1, 2, and 3. It means thatΘ can be
assigned as[0 ∗ p ∗ n ∗ 0 ∗]T for other problems.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

fa(0) 0.62 ∗ 0.08 ∗ 0.13 ∗ 0.53 ∗
fa(p) 0.3 ∗ 0.75 ∗ 0 ∗ 0 ∗
fa(n) 0.08 ∗ 0.17 ∗ 0.87 ∗ 0.47 ∗

Table 2: Average frequencies of0, p, andn for eachθi in Θ
from Problems 1, 2, and 3.fa(·) is the average frequency to
find the global maximum and its value is scaled between0
and1.

From the empirical results, Table 1 for the rotation gate
can be simplified as Table 3. The magnitude of∆θi has
an effect on the speed of convergence, but if it is too big,
the solutions may diverge or converge prematurely to a lo-
cal optimum. The values from0.001π to 0.1π are recom-
mended for the magnitude of∆θi, although they depend on
the problems. The sign of∆θi determines the direction of
convergence. It should be noted thatθ1 andθ7 can be as-
signed nonzero values in compliance with the application
problems.



xi bi ∆θi rec.
0 0 θ1 0

f(x) < f(b) 0 1 θ3 p
(true) 1 0 θ5 n

1 1 θ7 0

Table 3: Simplified lookup table of∆θi, wherebi andxi

are theith bits of the best solutionb and the binary solution
x, respectively.rec. means the recommended value of∆θi.
p is a positive number, andn is a negative number.

4 Effects of different parametric settings

In this section, the effects of changing parameters (such as
the population size, the global and local migration periods,
and the rotation angles) of QEA are investigated.

4.1 Population size

To investigate the effects of changing the population size
of QEA, the knapsack problem with 500 items considered
in [3] was used. The population size was tested from 1 to
100. The rotation gate was used for Q-gate. The values of
0.01π, −0.01π, and0 were used forθ3, θ5, and the rest of
Θ, respectively. The global migration period in generation
was 100, and the local migration period was 1. The local
group sizeng was set as

ng = max
(
integer

(n

5

)
, 1

)
, (3)

wheren is the population size. For the comparison pur-
pose, the conventional GA (CGA) which outperformed all
other CGAs which were considered in [3] was tested. The
values of 0.001 and 0.7 for the mutation and crossover prob-
abilities, respectively, were selected for CGA (Rep2). The
maximum number of generations was 1,000.

Figure 4 shows the results on the effects of changing the
population sizes of QEA and CGA. In Figure 4 (a) and (b),
the profits increased fast until the population size was 10-
20, however the increasing rate was nearly constant after
the population size reached 30. The tendency of the results
on QEA was similar to that of CGA. However, it should be
noted that the best and average profits of QEA with popu-
lation size 2 were better than those of CGA with popula-
tion size 100 (according to (d), the convergence speed of
QEA with population size 2 was 29 times faster than that
of CGA with population size 100). In Figure 4 (c), it is
also worthwhile to mention that the standard deviation of
the best profits of QEA over 30 runs decreased as population
size increased. It means that the larger population size could
provide better robustness for QEA. However, this relation
between population size and robustness did not appear in
the result of CGA after the population size reached 20. The
processing time of QEA was about twice of the CGA’s for
the same population size. This is because QEA uses Q-bit
individuals as a population. Q-bit individuals need floating
point calculations to represent the corresponding probabili-
ties. However, it should be noted that the processing time of
QEA is linearly proportional to the population sizen, which
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Figure 4: Effects of changing the population sizes of QEA
and CGA for the knapsack problem with 500 items. The
global migration period and the local migration period were
100 and 1, respectively. The local group size was set as (3).
The results were averaged over 30 runs.

is the same as CGA’s.

4.2 Global and local migrations

The performance of QEA with a few individuals was al-
ready verified in the previous results. It means that QEA
can be easily extended to a parallel scheme as proposed in
the structure of QEA. Since the parallel scheme can increase
the population diversity, it helps QEA to explore the search
space effectively.

To show the effects of changing the global migration pe-
riod, the same knapsack problem with 500 items was con-
sidered. The population sizes of 10, 30, and 50 were tested.
The maximum number of generations was 1,000. To inves-
tigate the effects of using the local migration, QEAs with
local migration and without local migration were consid-
ered for each population size. Figure 5 shows the effects
of changing the global migration period in QEAs with and
without local migration. The local group size of QEA with
local migration was set to be the same as (3). In the results
of QEA without local migration, an undershooting point
at near 40 was found, since the increasing diversity from
the global migration disturbed the convergence of homoge-
neous individuals. In the results of QEA with local migra-
tion, the undershooting point disappeared. This is because
the local migration with period 1 guaranteed the conver-
gence of homogeneous individuals in the same local group.
From these results, we can say that it is desirable that the lo-
cal migration period be set to 1 to guarantee the convergence
of homogeneous individuals. It is also worthwhile to men-
tion that the best results were found at the global migration
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Figure 5: Effects of changing the global migration period
in QEAs with and without local migration for the knap-
sack problem with 500 items. The global migration period
Tglobal was set to the values ranging from 1 to 300. For the
QEA with local migration, the period was 1 and the local
group size was set as (3). The profits were averaged over 30
runs.

period between 100 and 150, although the migration period
could be affected by other parameters. Consequently, the
global migration period should be set properly considering
the convergence period of the local groups.
Definition 1 A Hamming distanceH of the two binary
strings,x1 andx2, is defined as the number of their bitwise-
different bits, which is defined as

H(x1,x2) =
m∑

i=1

|x1i − x2i|

wherem is the binary string length.
Figure 6 shows the relations between migration and Q-

bit convergence. While the profits of the point A (Figure
6 (b)) increased continuously without perturbation, those of
the point B (Figure 6 (c)) and the point C (Figure 6 (d))
increased with perturbation. The perturbation was caused
by the global migration. The difference of the perturbation
level between the points B and C can be explained by using
the concept of Hamming distance. When a new best solu-
tion comes from the neighbor local group through the global
migration:

i) if the new best solution has a large Hamming distance
from the current best solution, the Q-bit individual
varies largely to adapt the new one;

ii) if the new best solution has a small Hamming distance
from the current best solution, the Q-bit individual
changes a little. In this case, the Q-bit individual has
a chance to have a premature convergence to a local
optimum.
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(c) Q-bit convergence (B)
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(d) Q-bit convergence (C)

Figure 6: Relations between migration and Q-bit conver-
gence for the knapsack problem with 500 items. The popu-
lation size was 30. The global migration periods of (b), (c),
and (d) were 1, 40, and 120, respectively. The local group
sizes of (b), (c), and (d) were 1, 1, and 6, respectively.

4.3 Rotation angles

In the previous empirical results, the best results on the
knapsack problem with 500 items were found at the global
migration period between 100 and 150. And the rotation
angle ofp (or |n|) was set to0.01π. However, if the rotation
angle is changed, the global migration period for inducing
the best result may be changed. If the value of rotation angle
is smaller, the global migration period must be larger, since
the convergence speed is changed to be slower.

Here, to investigate the effects of changing the rotation
angles, the knapsack problems with 500, 600, and 700 items
were considered. The population size and the local group
size were set to 30 and 6, respectively. The local migration
period was set to 1. The termination condition of Q-bit con-
vergence [19] was used instead ofMAX GEN and the value
of γ was set to0.99.

Figure 7 (a) shows the effects of changing the value of
rotation angle ranging from0.005π to 0.05π. As shown in
this figure, there is a peak value of the mean best profits for
the same rotation angleδθ. The value of global migration
period for the peak is larger as the value of rotation angle
is smaller. Figure 7 (b) shows the relation between the ro-
tation angle and the global migration period for each peak.
It shows that the rotation angle is inversely proportional to
the global migration period. The result is approximately the
same as

Tg =
1.15π

δθ
+ 10. (4)

Also, in Figure 7 (c), the running number of generations
where the algorithm is terminated by the termination condi-
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Figure 7: Effects of changing the rotation angles for the knapsack problems with 500, 600, and 700 items. The global
migration period was set to the values ranging from 1 to 300. The population size and the local group size were set to 30
and 6, respectively. The termination condition of Q-bit convergence [19] was used and the value ofγ was set to0.99. All
the results were averaged over 30 runs.δθ is the rotation angle ofp (or |n|), Tg the global migration period, andt0.99 the
number of generations where the algorithm is terminated by the termination condition forγ = 0.99. The dotted lines of
(b), (e), and (h) areTg = 1.15π

δθ
+ 10, Tg = 1.2π

δθ
+ 10, andTg = 1.34π

δθ
+ 10, respectively, and those of (c), (f), and (i) are

t0.99 = 9.0π
δθ

+ 80, t0.99 = 9.8π
δθ

+ 80, andt0.99 = 10.7π
δθ

+ 80, respectively.

tion for γ = 0.99 is approximately the same as

t0.99 =
9.0π

δθ
+ 80. (5)

Figure 7 (d)-(i) show the similar results in the relations
among the rotation angle, the global migration period, and
the running number of generations to those of Figure 7 (a)-
(c).

Consequently, the relation between the rotation angle
and the global migration can be approximated as

Tg =
λg

δθ
+ kg, (6)

whereλg > 0 andkg > 0. The relation between the rotation
angle and the running number of generations can be also
approximated as

tγ =
λγ

δθ
+ kγ , (7)

whereλγ > 0 andkγ > 0.
It is worthwhile to mention thatkg of (6) andkγ of (7)

are nonzero values, since each Q-bit is not updated when
the current best solution is changed to the current observed
solution in the update procedure. As the result of the knap-
sack problem with 500 items for checking how many times



the current best solution changes during the running num-
ber of generations, the best solutionb was changed about
80 times and the best solutionbj for each individual was
changed about 10 times, where the rotation angle and the
global migration period were set to0.01π and 100, respec-
tively.

5 Conclusions

This paper examined the effects of changing the parameters
of QEA to provide some useful guidelines for application
users. The values of the rotation angles for Q-gate were rec-
ommended reasonably. Moreover, the relation between the
population size and the performance showed that the larger
population size could provide better robustness for QEA. In
particular, the empirical results for different migration pe-
riods showed the importance of the global and local migra-
tions, and could provide specific values for the migration
periods. Also, the relation among the rotation angle, the
global migration period, and the running number of genera-
tions was presented. These guidelines can help researchers
and engineers who want to use QEA for their application
problems.

References

[1] D. B. Fogel, Evolutionary Computation: Toward a
New Philosophy of Machine Intelligence, 2nd ed. Pis-
cataway, NJ: IEEE Press, 2000.
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