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Abstract- In this paper, some guidelines for setting
the parameters of quantum-inspired evolutionary algo- Computing
rithm (QEA) are presented. QEA is based on the con-
cept and principles of quantum computing, such as a
guantum bit and superposition of states. However, QEA
is not a quantum algorithm, but a novel evolutionary al-
gorithm. Like other evolutionary algorithms, QEA is ‘ =

also characterized by the representation of the individ-

ual, the evaluation function, and the population dynam- Digital Ouantum

ics. From recent research on the knapsack problem, the Computer Computer

results of QEA are better than those of CGA (conven-

tional GA). Although the performance of QEA is excel-  Figure 1: Quantum-inspired evolutionary algorithm (QEA)
lent, there is relatively little or no research on the ef-

fects of different settings for its parameters. This paper

describes some guidelines for setting these parameters. Sition of states. However, QEA is not a quantum algorithm,
The guide"nes are drawn up based on extensive exper- but a novel eVOIUtionary algorithm as shown in Figure 1.
iments carried out for a class of combinatorial and nu-  Like any other EAs, QEA is also characterized by the repre-
merical optimization problems. Through the guidelines, sentation of the individual, the evaluation function, and the
the performance of QEA can be maximized. population dynamics.

Unlike other research areas, there has been relatively lit-
tle work done in applying quantum computing to evolu-
tionary algorithms. Quantum-inspired computing was in-
Evolutionary algorithms (EAs) are principally a stochastidroduced in [13]. In [14], a modified crossover operator
search and optimization method based on the principles Which includes the concept of interference was introduced.
natural biological evolution. Compared to traditional opn [15], a probabilistic representation and a novel population
timization methods, such as calculus-based and enumefnamics inspired by quantum computing were proposed.
tive strategies, EAs are robust, global, and may be appliéd [16], the applicability of QEA to a parallel scheme, par-
generally without recourse to domain-specific heuristics, aficularly, PC clustering, was verified successfully. In[3], the
though their performance may be affected by these heurf3@sic structure of QEA and its characteristics were formu-
tics. Overviews of current state of the art in the field ofated and analyzed, respectively. According to [3], the re-
evolutionary computation are given by Fogel [1] andcB  Sults (tested on the knapsack problem) of QEA were proved
12]. to be better than those of CGA. In [17], a QEA-based disk

Quantum-inspired evolutionary algorithm (QEA) re-allocation method (QDM) was introduced. According to
cently proposed in [3] can treat the balance between explH1€ results, the average query response times of QDM were
ration and exploitation more easily when compared to corfdual to or less than those of DAGA (disk allocation meth-
ventional GAs (CGASs). Also, QEA can explore the searcRdS using GA), and the convergence speed of QDM was
space with a smaller number of individuals and exploit thé-2-11.3 times faster than that of DAGA. In [18], QEA was
search space for a global solution within a short span @PPlied to a decision boundary optimization for face verifi-
time. QEA is based on the concept and principles of qua§ation. The proposed face verification system was tested by

tum computing, such as the quantum bit and the superpd@ce and non-face images extracted from AR face database.

Compared to the conventional PCA (principal components
1Quantum computing is a research area which includes quantum m@nalysis) method, improved results were achieved both in

chanical computers and quantum algorithms. Quantum mechanical cob@rms of the face verification rate and false alarm rate.

puters were proposed in the early 1980s [4], [5] and their description was

formalized in thg late ;9805 [6]. Many efforts on quantum computers havgomhm [9], and Grover's database search algorithm [10]. In particular,

progressed actively since the early 1990s because these computers Wate the difficulty of the factoring problem is crucial for the security of

shown to be more powerful than digital computers on various specializgfle Rsa cryptosystem [11] which is in widespread use today, interest in
problems. There are well-known quantum algorithms such as DEUtSCHUantum computing is increasing [12].

Jozsa algorithm [7], Simon’s algorithm [8], Shor’s quantum factoring al-
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This paper proposes some guidelines for setting the PRy if (global migration condition)
rameters of QEA. These guidelines are drawn up based on then migrateb to B(t) globally
empirical results. The effects of different settings for thg(i) else if(local migration condition)
parameters are examined from several experiments on opti- then migratebt. in B(t) to B(t) locally
mization problems. end ’
This paper is organized as follows. Section 2 describgg,
the QEA. Section 3 verifies the rotation angle selection for
Q-gate. Section 4 examines the effects of different paramet-
ric settings of QEA. Concluding remarks follow in Section Figure 3: Procedure QEA.
5.
2 QEA Figure 2 shows the overall structure of QEA and Figure
3 shows the procedure QEA that can be explained in the
2.1 Representation following manner.

i) In the step of ‘initialize Q(t),’ «f and 87, i =

QEA uses a novel Q-bit representation which is a kind of 5 ... ,,, of all o, j = 1,2,---,n, are initialized with
b b ’ ]7 b b b 1

probaplllstlp repres'enta}tlon. AQ-bI.t is Qeflngd as the sma}lll. It means that one Q-bit individuaj® represents the
est unit of information in QEA, which is defined as a palrﬁ{]ﬁear superposition of all the possible sjtates with the same
of numbers(a, 3), where|a|? + |3]? = 1. |a|? gives the perp P

probability that the Q-bit will be found in the ‘0’ state and PTOP2RIILY-

13]2 gives the probability that the Q-bit will be found in the ”t)hzhs'faf;espog?gf SW?;Q‘;‘;;Z;’)' uﬂo?iomi%) o C;S)s}e o
‘1’ state. A Q-bit may be in the ‘1’ state, in the ‘0’ state, or 9 ' L o e

i = i iox? i =
in a linear superposition of the two states. generatiort = 0. One binary solution;, j = 1,2, -+, n,

PR . it § ' is a binary string of lengthn, which is formed by selecting
A Q-bitindividual as a string o Q-bits is defined as either0 or 1 for each bit using the probability, eithax! |>

o1 s . a, or|87|%,i=1,2,---,m, of ¢J, respectively.
{ G B ‘ Bim ] ) @) iif) Each binary solutionxg? is evaluated to give a mea-
sure of its fitness.
where|a;|? + |32 =1,i =1,2,---,m. iv) The initial best solutions are then selected among the
Q-bit representation has the advantage that it is able finary solutions”(0), and stored int@3(0), whereB(0) =
represent a linear superposition of states probabilistically. {, bJ,---,b%}, and b? is the same ax‘]? at the initial

there is, for instance, a three-Q-bit system with three pairs generation.
amplitudes, the system can contain the information of eight Vv, Vi) In the while loop, binary solutions inP(t) are
states. The Q-bit representation has a better characteritiémed by observing the states Qfz — 1) as in step ii),

of population diversity than other representations. and each binary solution is evaluated for the fitness value. It
should be noted that’ in P(t) can be formed by multiple
2.2 Basic structure of QEA observations oqfl inQ(t—1).

. . . - . vii) In this step, Q-bit individuals irQ(¢) are updated by
QEA is a probabilistic algorithm similar to other evolution- - i . -
ary algorithms. QEA, however, maintains a population O?pplylng Q-gates defined as a variation operator of QEA, by

R L : . which operation the updated Q-bit should satisfy the nor-
QT 01 I ) S9SN, oo contor) 7 1wt ar ar
n ’ YN J= L4 N, -bi i i
is a Q-bit individual defined as (1). the values of the updated Q-bit. The following rotation gate



is used as a basic Q-gate in QEA, such as 30 for all —5.12 < x; < —5.0. This function is a modified
. version of De Jong function F3.
cos(Ad;) —sin(Af;) ]

N — Problem 3: Maximize = —1
U(Ab:) sin(Af;)  cos(Ab;) @ fs(x)

R, 0 ()
100.98, whergy; (1, z2) = ¢; + Y-, (z; — ai;)%, where

whereA#;,i = 1,2,---,m, is arotation angle of each Q-bit —65.536 < @ < 65.536, K — 500, ¢; = j, and]as,] =

toward eithe® or 1 state depending on its sigi\6; should
be designed in compliance with the application problem. [-32 —16 0 16 32 —-32 —16 --- 0 16 32

viii, ix) The best solutions among (¢ — 1) and P(t) are {—32 —-32 -32 —-32 -32 —16 —16 --- 32 32 32|
selected and stored in8(¢), and if the best solution stored
in B(t) is better fitted than the stored best solutlonthe
stored solutiorb is replaced by the new one.

x) If the global migration condition is satisfied, the bes Each variable was encoded as a 25-bit string. The pop-

solutionb is migrated taB(t) globally. lati : <. Th . ber of i
xi) If the local migration condition is satisfied, the best'21ON SIZ€ Was. € maximum humber of generations

one in alocal group iB(¢) is migrated to others in the sameV2s 1,000 The values_ oD, 0.005, and —0.005 were .
local group. used for each of the eight angle parameters. The experi-

Until the termination condition is satisfied, QEA is run-ments of Prpblemi;, 2, arjd3, respectively, carried out step
ning in thewhile loop. by step to find proper signd, p,n) of the angle parame-
ters. The results o, 04, 05, andfg, that is, the cases

. which f(x) < f(b) is false, were worthwhile to mention
3 Rotation angles for Q-gate that the values ofly, 84, 6, andfs had little effect on the

In [3], Table 1 was suggested to guide the selection of tr%en‘ormance. These are the same results of the knapsack

angle parameters for the rotation gate given in (2). It Wagrot;)rl]em ass hown |r: [3]. fln parr]tlculzlr, the set(-bg(t)r.flng-f
suggested and verified to set a positive numbéar 65, a Ing the maximum value of €ach problem was obtained from

negative number. for 05, and0 for the rest of the angle the experimental results as follows:

parameters ir® of Table 1 for the knapsack problem. In  fi: [0xp* 0xn]T,[0%px 0% 0%]T,[0% pxnx0x]7T,
particular, the empirical results showed that 6,, 65, and [p*p*nx*0xT,and[p x p * n * nxT;

fs could be set to any one amofgp, andn. However, it

The global maximum value isl00 at (z1,x2) =
(—32, —32). This function is a modified version of De Jong
{unction F5.

. T T T
is questionable whether it is possible to @ef Table 1for /2 [0 0+ . [0%pxnxn *]T’ [0%7%n+0 *]T'
other problems. Oxnxnxn«]", [0x0xnx0«]",[0x0xnxn*’,

n*nxnx* 0«7 andln * n x n* nx’;

zi | bi | f(x) < [f(b) Ab; 3 [0xpxn*x 0T, [0xprxnsxn]T, [prpxnx0x]T,
8 8 ;Tgw 21 =0 and[p * p * n x n¥|T.

atse = %
011 true 9? —p Table 2 shows the average frequencie$)0p, andn for
011 false 0, = eachd; in © from the above results. From the table,x
110 true 0. —n p * n * 07 has a higher frequency and is included in each
110 false 9; — % set of© for Problems 1, 2, and 3. It means titatcan be
111 true 0. =0 assigned af) * p = n x 0] for other problems.
1|1 false fs = *

91 92 93 94 05 06 97 98

Table 1: Lookup table of\¢; suggested from [3], where | /(%) 06632 * g'gi * 0'013 * 0'5'3
f(-) is the fitness, and; andz; are theith bits of the best fo(p) | O. e * *

. . . . . fa(n) | 0.08 | * | 0.17 | = | 0.87 | * | 047
solutionb and the binary solutios, respectively.x is one

of (0, p, andn), wherep is a positive number and is a  Taple 2: Average frequencies @fp, andn for eachy; in ©
negative number. from Problems 1, 2, and ¥, (-) is the average frequency to

) ) find the global maximum and its value is scaled between
Three numerical problems are considered to show thg},q;.

the results or® can be applied to other optimization prob-

lems. To deal with numerical problems, real values of the From the empirical results, Table 1 for the rotation gate
variables should be encoded as binary strings since QEan be simplified as Table 3. The magnitudeXyd; has
uses a Q-bit representation to generate a binary bit. Tlam effect on the speed of convergence, but if it is too big,
three numerical problems are as follows: the solutions may diverge or converge prematurely to a lo-
Problem 1: Maximize f; (x) = 100—(100(x? —x5)?+(1— cal optimum. The values from.0017 to 0.17 are recom-
71)?), where—2.048 < z; < 2.048. The global maximum mended for the magnitude &f¥;, although they depend on
valueisl00 at(x1,z2) = (1, 1). This function is a modified the problems. The sign aké, determines the direction of
version of De Jong function F2. convergence. It should be noted tidatandd; can be as-
Problem 2: Maximize f2(x) = — Zle integer(x;), signed nonzero values in compliance with the application
where—5.12 < z; < 5.12. The global maximum value is problems.




z; | by | Ab; | rec. )
010 01 0 H
fe) < fb) [0 [ 1] 65 | p
(true) 1|10 65 n
1[1]6, | 0 i -
Table 3: Simplified lookup table ahd;, whereb; andz; | T
are theith bits of the best solutiob and the binary solution e

x, respectivelyrec. means the recommended value;. Fopdatonsze Fopdaionsze
p is a positive number, and is a negative number. () Best profits (b) Average profits
4 Effects of different parametric settings § g | .

a o

In this section, the effects of changing parameters (such as” "
the population size, the global and local migration periods, -
and the rotation angles) of QEA are investigated. :

CGA_

mmmmmmmmmm

Population size Population size

4.1 Population size

To investigate the effects of changing the population size

of QEA, the knapsack problem with 500 items considered  (¢) Standard deviation (d) Processing times¢c .)
in [3] was used. The population size was tested from 1
100. The rotation gate was used for Q-gate. The values
0.017, —0.017, and0 were used fops, 65, and the rest of
0, respectively. The global migration period in generatio
was 100, and the local migration period was 1. The loc
group sizen, was set as

Epure 4: Effects of changing the population sizes of QEA

and CGA for the knapsack problem with 500 items. The
lobal migration period and the local migration period were

300 and 1, respectively. The local group size was set as (3).
he results were averaged over 30 runs.

ng = max (z‘nteger (g) , 1) , (3) isthe same as CGAs.

wheren is the population size. For the comparison pur4.2 Global and local migrations

pose, the conventional GA (CGA) which outperformed all ) o

other CGAs which were considered in [3] was tested. Th&n€ performance of QEA with a few individuals was al-
values of 0.001 and 0.7 for the mutation and crossover prop£ady verified in the previous results. It means that QEA

abilities, respectively, were selected for CGRep2). The can be easily extended to a parallel scheme as proposed in
maximum number of generations was 1,000 the structure of QEA. Since the parallel scheme can increase

Figure 4 shows the results on the effects of changing tﬁge population diversity, it helps QEA to explore the search

population sizes of QEA and CGA. In Figure 4 (a) and (b)SPace effectively. _ o
the profits increased fast until the population size was 10- 10 Show the effects of changing the global migration pe-
20, however the increasing rate was nearly constant aftgpd: the same knapsack problem with 500 items was con-

the population size reached 30. The tendency of the resuftidered. The population sizes of 10, 30, and 50 were tested.

on QEA was similar to that of CGA. However, it should beThe maximum number of generations was 1,000. To inves-

noted that the best and average profits of QEA with popdi_gate the effects of uging the local _migrgtion, QEAs W_ith
lation size 2 were better than those of CGA with populaI_ocal migration and W!thouF Iocal'mlgratlon were consid-
tion size 100 (according to (d), the convergence speed §fed for €ach population size. Figure 5 shows the effects
QEA with population size 2 was 29 times faster than that! changing the global migration period in QEAs with and
of CGA with population size 100). In Figure 4 (c), it is W|thout.loca_l migration. The local group size of QEA with
also worthwhile to mention that the standard deviation Olpcal m|gr§tlon was set t9 be.the same as (3). In.the re;ults
the best profits of QEA over 30 runs decreased as populatigh QEA Without local migration, an undershooting point
size increased. It means that the larger population size cofli"ear 40 was found, since the increasing diversity from
provide better robustness for QEA. However, this relatiof'€ 910bal migration disturbed the convergence of homoge-
between population size and robustness did not appear/JfUs individuals. In the results of QEA with local migra-
the result of CGA after the population size reached 20. THEPN, the undershooﬂn_g pom.t disappeared. This is because
processing time of QEA was about twice of the CGA's fothe local migration W|th.pe'r|9d 1 g'uaranteed the conver-
the same population size. This is because QEA uses Q-Bff"Ce of homogeneous individuals |.n.the same local group.
individuals as a population. Q-bit individuals need floatind:rom_thes_e resul_ts, we can say thatitis desirable that the lo-
point calculations to represent the corresponding probabiff@! Migration period be setto 1 to guarantee the convergence

ties. However, it should be noted that the processing time 81f horr]nogre;nious |nd|v||duals. |ft IS a(l::SO V\If]orthlwg'lf tq men-
QEA s linearly proportional to the population sizewhich tion that the best results were found at the global migration



Profit
Profit
Profit

wl local migration

Convergence

- wi local migration \ wi local migration
s 00| C
o0 amo A

=) / w7 wiolocal migration X \
A 000 e wio local migration 000] o™ w0 local migration

E , F =
Tyoba Toiona Tgova Generation

(a) Population size 10 (b) Population size 30 (a) Effects of migrations (b) Q-bit convergence (A)

Profit

wi local migration

e wiolocal migration

B w W W @ W me w0 aw w0 w0 ™ w0 w0 wox ‘o %e a0  ®0 40 &0 e a0 w0

T W w0
gobal Generation Generation

(c) Population size 50 (c) Q-bit convergence (B) (d) Q-bit convergence (C)

Figure 5: Effects of changing the global migration periodrigure 6: Relations between migration and Q-bit conver-
in QEAs with and without local migration for the knap- gence for the knapsack problem with 500 items. The popu-
sack problem with 500 items. The global migration periodation size was 30. The global migration periods of (b), (c),
Tqi0pa1 Was set to the values ranging from 1 to 300. For thand (d) were 1, 40, and 120, respectively. The local group
QEA with local migration, the period was 1 and the locakizes of (b), (c), and (d) were 1, 1, and 6, respectively.
group size was set as (3). The profits were averaged over 30

runs. _
4.3 Rotation angles

period between 100 and 150, although the migration peridé the previous empirical results, the best results on the
could be affected by other parameters. Consequently, tkeapsack problem with 500 items were found at the global
global migration period should be set properly consideringnigration period between 100 and 150. And the rotation
the convergence period of the local groups. angle ofp (or |n|) was set td).017. However, if the rotation
Definition 1 A Hamming distanceld of the two binary angle is changed, the global migration period for inducing
strings,x; andx,, is defined as the number of their bitwise-the best result may be changed. If the value of rotation angle

different bits, which is defined as is smaller, the global migration period must be larger, since
" the convergence speed is changed to be slower.
_ Here, to investigate the effects of changing the rotation
H = i — T . .
(a1, %2) 12_; [1: = 22l angles, the knapsack problems with 500, 600, and 700 items

were considered. The population size and the local group

wherem is the binary string length. size were set to 30 and 6, respectively. The local migration
Figure 6 shows the relations between migration and Qyeriod was set to 1. The termination condition of Q-bit con-

bit convergence. While the profits of the point A (Figureyergence [19] was used insteadMfax GEN and the value
6 (b)) increased continuously without perturbation, those &ff - was set td).99.
the point B (Figure 6 (c)) and the point C (Figure 6 (d)) Figure 7 (a) shows the effects of changing the value of
increased with perturbation. The perturbation was causegtation angle ranging frord.0057 to 0.057. As shown in
by the global migration. The difference of the perturbationhis figure, there is a peak value of the mean best profits for
level between the points B and C can be explained by usifBe same rotation angt. The value of global migration
the concept of Hamming distance. When a new best solieriod for the peak is larger as the value of rotation angle
tion comes from the neighbor local group through the globaé smaller. Figure 7 (b) shows the relation between the ro-
migration: tation angle and the global migration period for each peak.

i) i the new best solution has a large Hamming distanc%lShOWS that the rotation angle is inversely proportional to

from the current best solution, the Q-bit individualt e global migration period. The result is approximately the
varies largely to adapt the new one; same as
L . . . 1.15
ii) ifthe new best solution has a small Hamming distance T, = 5 T 1 10. @)
0

from the current best solution, the Q-bit individual

changes a little. In this case, the Q-bit individual hag\|so, in Figure 7 (c), the running number of generations

a chance to have a premature convergence to a loGghere the algorithm is terminated by the termination condi-
optimum.
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Figure 7: Effects of changing the rotation angles for the knapsack problems with 500, 600, and 700 items. The global
migration period was set to the values ranging from 1 to 300. The population size and the local group size were set to 30
and 6, respectively. The termination condition of Q-bit convergence [19] was used and the valwaotet td@.99. All

the results were averaged over 30 rufisis the rotation angle af (or |n|), T, the global migration period, ang 99 the

number of generations where the algorithm is terminated by the termination condition=fd1.99. The dotted lines of

(b), (), and (h) ard, = {57 +10, T, = 4% + 10, andT, = 12 + 10, respectively, and those of (c), (f), and (i) are

to.99 = LT + 80, t0.00 = T + 80, andtg g9 = 15T + 80, respectively.

tion fory = 0.9 is approximately the same as where), > 0 andk, > 0. The relation between the rotation
. angle and the running number of generations can be also
to.09 = —5 T 80. ()  approximated as
Figure 7 (d)-(i) show the similar results in the relations b= Ay Tk )
among the rotation angle, the global migration period, and T g v
the running number of generations to those of Figure 7 (a~}\7here>w > 0 andk., > 0.
(c). ) ) It is worthwhile to mention thak, of (6) andk., of (7)
Consequently, the relation between the rotation anglge nonzero values, since each Q-bit is not updated when
and the global migration can be approximated as the current best solution is changed to the current observed
A solution in the update procedure. As the result of the knap-

Ty = 57: + kg, 6)  sack problem with 500 items for checking how many times



the current best solution changes during the running numf9] P. W. Shor, “Algorithms for Quantum Computation:

ber of generations, the best solutibnwas changed about Discrete Logarithms and Factoring,”Rroceedings of
80 times and the best solutidsy for each individual was the 35th Annual Symposium on Foundations of Com-
changed about 10 times, where the rotation angle and the puter SciencePiscataway, NJ: IEEE Press, pp. 124-
global migration period were set o017 and 100, respec- 134, Nov. 1994,

tively.

[10] L. K. Grover, “A fast quantum mechanical algorithm
for database search,” Proceedings of the 28th ACM
Symposium on Theory of Computingp. 212-219,

This paper examined the effects of changing the parameters 1996.

of QEA to provide some useful guidelines for applicatior‘[ll] R. L. Rivest, A. Shamir, and L. Adleman, “A

users. The values of the rotation angles for Q-gate were rec- = method of obtaining digital signatures and public-
ommended reasonably. Moreover, the relation between the keycryptosystemsCommunications of the ACMol.

populat?on s_ize and the pe_rformance showed that the larger 21, no. 2, pp. 120-126, Feb. 1978.

population size could provide better robustness for QEA. In

particular, the empirical results for different migration pe{12] C. P. Williams and S. H. Clearwatdexplorations in
riods showed the importance of the global and local migra-  Quantum Computingerlin: Springer-Verlag, 1998.
tions, and could provide specific values for the migration .

periods. Also, the relation among the rotation angle, thlels] M. Moore and'A. NarayanaQuantum-inspired Com-
global migration period, and the running number of genera-  Puting Technical report, Department of Computer
tions was presented. These guidelines can help researchers SC¢ience, University of Exeter, UK, 1995.

and engineers who want to use QEA for their applicatioTM] A. Narayanan and M. Moore, “Quantum-inspired ge-
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