
 
 

 

  

Abstract— This paper proposes a multiobjective evolutionary 
algorithm (MOEA) inspired by quantum computing, which is 
named quantum-inspired multiobjective evolutionary algorithm 
(QMEA). In the previous papers, quantum-inspired 
evolutionary algorithm (QEA) was proved to be better than 
conventional genetic algorithms for single-objective 
optimization problems. To improve the quality of the 
nondominated set as well as the diversity of population in 
multiobjective problems, QMEA is proposed by employing the 
concept and principles of quantum computing such as 
uncertainty, superposition, and interference. Experimental 
results pertaining to the multiobjective 0/1 knapsack problem 
show that QMEA finds solutions close to the Pareto-optimal 
front while maintaining a better spread of nondominated set. 

I. INTRODUCTION 
volutionary algorithms (EAs) inspired from the processes 
of evolution in nature are stochastic search mechanisms. 

A lot of current research in EAs is focused simultaneous 
optimization problems of several objectives. The growing 
interest in highly complex search space has spurred the 
growth of multiobjective evolutionary algorithms (MOEAs) 
[1]-[6]. The strength Pareto evolutionary algorithm (SPEA) 
[1] was proposed based on elitism by maintaining an external 
population. Its improved version, SPEA2 [2], employing a 
refined fitness assignment, coupled with an enhanced archive 
truncation technique, was followed. The nondominated 
sorting genetic algorithm (NSGA) appeared earlier [3] and a 
better performing NSGA-II was presented [4]. They have 
tried to remedy many drawbacks of NSGA. Their approach 
uses an elite conservation strategy and diversity preservation 
mechanism. It shows good performance in solving 
challenging problems. 

To explore effective the search space of multiobjective 
problems (MOPs), the concepts of quantum computing are 
adopted in the proposed approach. Quantum mechanical 
computers were proposed in the early 1980s [7], [8]. It was 
then formalized in the late 1980s [9], [10]. Quantum-inspired 
evolutionary computing [11]-[17] for digital computer has 
been one of the issues and research on merging quantum 

 
Yehoon Kim and Jong-Hwan Kim are with EECS Department, KAIST, 

Guseong-dong, Yuseong-gu, Daejeon-shi, 305-701, Republic of Korea 
(e-mails: {yhkim, johkim}@rit.kaist.ac.kr).  

Kuk-Hyun Han is with the Digital Media R&D Center, Samsung 
Electronics Co., Ltd., 416, Maetan-3dong, Youngtong-gu, Suwon, Gyeonggi, 
443-742, Republic of Korea (e-mail: khhan@khhan.com) 

This work was supported by the Ministry of Information and 
Communications, Korea, under the Information Technology Research Center 
(ITRC) Support Program. 

computing into evolutionary computation has started since 
the late 1990s. Recently, quantum-inspired evolutionary 
algorithms (QEAs) was proposed [15], [16]. QEA can 
explore and exploit search space for a global optimal solution. 

This paper proposes quantum-inspired multiobjective 
evolutionary algorithm (QMEA) to improve proximity to the 
Pareto-optimal front, preserving diversity intact by 
employing advantages of QEA. The improving proximity 
means to find the better solutions which are evaluated as good 
individuals by fitness function. The investigation is within the 
NSGA-II framework. NSGA-II is a strong elitist method with 
mechanisms to maintain diversity efficiently using 
nondominated sorting and crowding distance assignment. It is 
even more powerful if the elitism is further strengthened and 
the solutions are spread out by quantum mechanism. Multiple 
observations of Q-bit individuals allow a local search in the 
vicinity of the nondominated solutions. Also, maintaining 
best Q-bit individuals in every generation can avoid the 
possibility of losing high quality individuals. Furthermore to 
deal with quantum computing concepts in MOEAs, the 
comparison mechanism is presented between the best group 
and the others. Convergence and preservation of diversity 
being the key issues under scrutiny, the proposed approach is 
expected to help improve the performance of any MOEA. 

This paper is organized as follows. Section II presents an 
overview of QEA and Section III describes MOEAs, in 
particular NSGA-II. Section IV defines the procedure of 
proposed QMEA. The experimental results in Section V 
show that QMEA is capable of approaching a proximate 
Pareto-optimal front and with good diversity. Finally 
concluding remarks follow in Section VI.  

II. QUANTUM-INSPIRED EVOLUTIONARY ALGORITHM 
QEA utilizes a new representation, called a Q-bit, for the 

probabilistic representation that is based on the concept of 
qubits [15]. A qubit may be in the “1” state, in the “0” state, or 
in any superposition of the two [22]. The state of a qubit can 
be represented as 

10 βα +=Ψ   (1)

where α and β are complex numbers that specify the 
probability amplitudes of the corresponding states. 
Normalization of the state to unity always guarantees: 

.122 =+ βα   (2)

A Q-bits is defined as the smallest unit of information in 
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QEA, which is defined with a pair of number, (α, β), as 
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where .122 =+ βα  

A Q-bit individual is defined as a string of Q-bits. 
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individual. Since the Q-bit representation is able to express as 
a linear superposition of states probabilistically, it is 
profitable for generating diversity in the evolutionary process. 
A Q-bit individual is defined as: 
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where m is the number of Q-bits, i.e., the string length of the 
Q-bit individual, and j = 1, 2, …, n. 

The procedure of QEA and the overall structure are 
described in the following: 

 
Procedure QEA 
Begin 
  t ← 0 
i)  initialize Q(t) 
ii)  make P(t) by observing the states of Q(t) 
iii) evaluate P(t) 
iv) store the best solutions among P(t) into B(t) 
v)  while (not termination condition) do 
  begin 

t ← t + 1 
vi)  make P(t) by observing the states of Q(t-1) 
vii)  evaluate P(t) 
viii)  update Q(t) using Q-gates 
ix)        store the best solutions among B(t-1) and P(t) into  

B(t) 
x)         store the best solution b among B(t) 
xi)        if (migration condition) 

then migrate b or t
jb  to B(t) globally or locally 

  end 
end 
 

i) 
0

0

=
=

t

t
jj qq  , j = 1, 2, …, n, are initialized with 1/ 2  . It 

means that one Q-bit individual, 0
jq , represents the linear 

superposition of all possible states with the same probability. 
ii) This step makes binary solutions in P(0) by observing 

the states of Q(0), where },...,,{)0( 00
2

0
1 nP xxx=   at generation 

t = 0. One binary solution, 0
jx  ,  j = 1, 2, …, n, is formed by 

selecting either 0 or 1 for each bit using the probability, either  
20

iα  or  20
iβ , i = 1, 2, …, m, of 0

jq . QEA is working on a 

digital computer and collapsing into a single state does not 
occur in QEA. 

iii) Each binary solution, 0
jx , is evaluated to give a level of 

its fitness. 
iv) The initial best solutions among the binary solutions are 

stored into B(0), where },...,,{)0( 00
2

0
1 nB bbb= , and 
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0

=
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t
jj bb   is the same as 0

jx  at the initial generation. 

v) Until the termination condition is satisfied, QEA is 
running in the while loop. 

vi), vii) In the while loop, binary solutions in P(t) are 
formed by multiple observing the states of Q(t-1) as in step ii), 
and each binary solution is evaluated for the fitness value. t

jx  

should be replaced by t
jlx , where l is an observation index. 

viii) Q-bit individuals in Q(t) are updated by applying 
rotation gate defined below 
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where ∆θ  is a rotation angle of each Q-bit. ∆θ should be 
designed in compliance with the application problem. 

ix), x) The best solutions among B(t-1) and P(t) are 
selected and stored into B(t). If the best solution stored in B(t) 
is fitter than the stored best solution b, the stored solution b is 
replaced by the new one. 

xi) If the migration condition is satisfied, the best solution 
b is migrated to B(t). The global or local migration operation 
is helpful to treat the balance between exploration and 
exploitation in QEA for single-objective optimization 
problems (SOPs). However migration operation can have a 
negative influence in MOPs because migration of solutions 
may disturb the endeavor for preserving diversity. If the local 
best individual is substituted by the global best solution, 
solutions are then crowded in search space. To prevent this 
problem, the proposed algorithm does not utilize migration 
operation. 

III. MULTIOBJECTIVE EVOLUTIONARY ALGORITHM 
MOEAs have two goals: first, solutions have to be close to 

the Pareto-optimal front and second, diversity of population 
should be preserved well in order to find as many solutions as 
possible. In this section, the main schemes of the state of the 
art MOEA is reviewed such as fast nondominated sorting and 
crowding distance calculation for both issues [4]. 

A. Fast nondominated sorting  
Elitism, which prevents losing the best individuals, is a 

good strategy [18]. Therefore, the elitism becomes a general 
scheme in MOEAs [20]. For the elitism, population must be 
sorted into different levels. The sort procedure [4] is as 
follows: nondominated front is founded and temporarily 
saved to search next nondominated front. This procedure is 
repeated until all individuals are ranked. Fast nondominated 
sorting algorithm reduces computation time from O(MN3) to 
O(MN2). 
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B. Crowding distance calculation 
In order to satisfy the second issue, efficient diversity 

preservation method, where the density of each individual is 
estimated, was proposed [4]. Normalized crowding distance 
calculation is useful to obtain an estimate of the density of 
solutions. The crowding distance of a solution refers to the 
average side length of the cuboid that has the vertices of the 
nearest neighbors. O(MNlogN) computations take to get all 
crowding distance values. 

IV. QUANTUM-INSPIRED MULTIOBJECTIVE EVOLUTIONARY 
ALGORITHM 

This section describes the proposed QMEA for enhancing 
proximity and diversity of nondominated solutions.  

A. Main procedure 
A bridge for fitting QEA into the MOEA framework is 

required. The framework (that was devised in [4]) behind the 
fitting procedure is employed. The whole procedure of 
QMEA is as follows. 
 
procedure QMEA 
begin 

t ← 0 
i)  initialize Q(t) 
ii)    make P(t) by observing the states of Q(t) 
iii)   evaluate P(t) 
iv) while (not termination condition) do 
  begin 

t ← t + 1 
v)  make P(t) by observing the states of Q(t-1) 
vi)  evaluate P(t) 
vii)  run the fast nondominated sort algorithm for P(t) ∪ 

P(t-1)  
viii)  calculate crowding distance and sort 
ix)  P(t) is formed by the first N elements in the sorted 

population 2N. 
x)   Q(t) is classified into several groups 
xi)  update Q(t) using Q-gates refer to best group 
  end 
end 
 

i) ~ vi) These steps are same as QEA procedure. In this 
paper, the termination criterion used is maximum number of 
generations. 

vii) The individuals in 2N population (P(t) ∪ P(t-1)) are 
rearranged by the fast nondominated sort algorithm, which is 
introduced in [4]. 

viii) Also, 2N population is sorted by crowding distance 
calculation. 

ix) The survival of the superior N individuals in a 
generation follows in the same way as in [4]. The survived 
individuals form P(t). The Q-bit individuals corresponded to 
P(t) is also copied to Q(t). 

x) Group classification rule is utilized in this step. 
xi) Instead of crossover and mutation, the update operation 

(rotation gate) perturbs the Q-bit. 
 

B. Update Operation 
Q-gates in QEA play a role of perturbation operation in 

genetic algorithm. A rotation gate U(∆θ) [15] is employed to 
update a Q-bit individual as a variation operator in QMEA.  

C. Group Classification 
When Q-bit individuals are updated by a rotation gate, the 

update operation refers to bits of the best solution. Population 
(N) is divided into several groups (G1, G2, …, Gn) from the 
top front in the sorted population P(t). Since better (higher 
ranked and less crowded) solutions have been already sorted, 
G1 is the best group, which is utilized to update Q-bit 
individuals of other groups. The individual in G1 is the best 
solution b. Q-bit individuals in lower ranked groups (G2, G3, 
…, Gn) are updated according to best group G1 (Fig. 1). For 
the elitism, Q-bits in G1 are retained. Comparison between x 
and b follows the rules:  

All individuals in Gi compare with ith solution in G1, 

n S
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NS ii ≥⎥⎦
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where Si is the number of individuals in a ith group, i = 1, 2, …, 
n-1, N is the population size, n is the total number of groups. 
Since Si should be an integer value, the value of Si can be 
different. 
 

Best Group (G1)

G2

G3

Gn

...

 
 

Fig. 1.  Comparison between the groups 

V. EXPERIMENTAL RESULTS 
In this section, the multiobjective 0/1 knapsack problem is 

briefly reviewed. It also describes the performance measure 
method, and investigates the performance of QMEA.  

A. Multiobjective 0/1 Knapsack Problem 
The multiobjective 0/1 Knapsack Problems have been a 

good benchmark as a test problem to evaluate the 
performance of MOEAs. The problem is to find items, 
maximizing the total profit such that the total weight does not 
exceed the given capacity. The problem is to find x = (x1, x2, 
…, xn) ∈ {0, 1}n such that 
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where pi,j is the profit of item j in the knapsack i, wi,j is the 
weight of item j in the knapsack i, and ci is the capacity of the 
knapsack i.  f(x) = (f1(x), …, fn(x)) is maximized, where 
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A greedy repair method is used to produce the best 
outcomes for constraint handling. 

B. Performance Measure 
In order to evaluate the quality of nondominated solutions, 

following two scaling-independent metrics [20] are chosen: 
Size of the dominated space (S) and coverage of two sets (C). 
A diversity metric is also employed [21] that efficiently 
evaluates the spread of nondominated solutions. The diversity 
metric is given as follows: 
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where N0 is a set of nondominated solutions, di is the minimal 
distance between the ith solution and the nearest neighbor, d  
is the mean value of all di . (max)

kf  ( (min)
kf ) represents the 

maximum (minimum) fitness of the kth objective. A larger 
value means a higher diversity of the nondominated 
solutions. 

C. Experimental Results 
We chose two-knapsacks with 250 items, 500 items, and 

750 items for test purposes. The NSGA-II was chosen as a 
reference. A pair-wise tournament selection, binary-coded 
GA with 1-point crossover and bitwise mutation were in force 
for NSGA-II. Parameters used in this experiment are given in 
Table I. l is the length of binary string. 

 
TABLE I 

PARAMETER SETTING 
Parameters Values 

Population size (N) 100 

No. of generations 100 

Crossover Prob. (pc) 0.9 

Mutation Prob. (pm) 1 / l 

No. of observations 10 

No. of groups (n) 10 
∆θ 0.01π 

 
Since similar proximity of two methods (QMEA and 

NSGA-II) is possible in a large enough population, The 
population size was fixed at 100. The number of generations 

was also fixed at 100 for the same reason. The parameter 
values were obtained from experimental evaluations. The 
comparison results were averaged over 10 tests. 
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Fig. 2. Comparison results for 2-knapsack problem 
 

Fig. 2 compares the results found by the QMEA with that 
of NSGA-II. Only non-dominated solutions are plotted in the 
graph. The results show that QMEA can find higher quality 
solutions than NSGA-II. It is due to the characteristics of 
QEA. Binary strings of high quality can be obtained by 
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multiple observations in each Q-bit individuals. If multiple 
observations of Q-bit individuals are applied for creating the 
offspring, there is a high probability that the offspring visits 
some region that is unexplored from the vicinity of the chosen 
candidates. It helps that a set of solutions is close to 
Pareto-optimal front and spread out.  

Table II shows the scaling-independent metrics, where the 
size of the dominated space of QMEA is larger than that of 
NSGA-II in each items. These results show that QMEA 
dominates more search space than NSGA-II. Coverage also 
shows that QMEA dominates NSGA-II. 

 
TABLE II 

SIZE OF THE DOMINATED SPACE AND COVERAGE 

metric 250 items 500 items 750 items 

S(QMEA) 8.2784708·107 3.39353211·108 7.31504155∙ 108

S(NSGA2) 7.8479896·107 3.25536637·108 6.97593468∙ 108

C(QMEA,
NSGA2) 1.0 1.0 1.0 

 
The diversity preservation performance is compared in Fig. 

3. It shows an increased tendency toward diversity 
preservation of QMEA. The reason is that it searches broad 
regions of solution space. In conclusion, QMEA performs 
better than NSGA-II on both counts such as proximity and 
distribution of solutions. 
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Fig. 3. Diversity measure for 2-knapsack problem 

VI. CONCLUSIONS 
In this paper, quantum-inspired multiobjective 

evolutionary algorithm (QMEA) was proposed based on the 
quantum computing concept. QMEA is the extended version 
of QEA for multiobjective problems. The experimental 
results for multiobjective 0/1 knapsack problem supported 
the claim that proposed approach exhibits better proximity 
performance as well as diversity maintenance. Schemes that 
utilize a nondominated set can benefit from the proposed 
approach because QEA is applicable to any MOEA 
framework. 
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