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Abstract. Face verification is considered to be the main part of the
face detection system. To detect human faces in images, face candidates
are extracted and face verification is performed. This paper proposes
a new face verification algorithm using Quantum-inspired Evolutionary
Algorithm (QEA). The proposed verification system is based on Prin-
cipal Components Analysis (PCA). Although PCA related algorithms
have shown outstanding performance, the problem lies in the selection of
eigenvectors. They may not be the optimal ones for representing the face
features. Moreover, a threshold value should be selected properly consid-
ering the verification rate and false alarm rate. To solve these problems,
QEA is employed to find out the optimal distance measure under the
predetermined threshold value which distinguishes between face images
and non-face images. The proposed verification system is tested on the
AR face database and the results are compared with the previous works
to show the improvement in performance.

1 Introduction

Most approaches to face verification fall into one of two categories. They are
either based on local features or on holistic templates. In the former category,
facial features such as eyes, mouth and some other constraints are used to verify
face patterns. In the latter category, 2-D images are directly classified into face
groups using pattern recognition algorithms.

We focus on the face verification under the holistic approach. The basic ap-
proach in verifying face patterns is a training procedure which classifies examples
into face and non-face prototype categories. The simplest holistic approaches rely
on template matching [1], but these approaches have poor performance compared
to more complex techniques like neural networks.

The first neural network approach to face verification was based on multi-
layer perceptrons [2], and advanced algorithms were studied by Rowely [3]. The
neural network was designed to look through a window of 20×20 pixels and was
trained by face and non-face data. Based on window scanning technique, the
face detection task was performed. It means that face verification network was
applied to input image for possible face locations at all scales.

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 2147–2156, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 594.962 841.96 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 3600 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice



2148 J.-S. Jang, K.-H. Han, and J.-H. Kim

One of the most famous methods among holistic approaches is Principal
Components Analysis (PCA), which is well known as eigenfaces [4]. Given an
ensemble of different face images, the technique first finds the principal com-
ponents of the face training data set, expressed in terms of eigenvectors of the
covariance matrix of the face vector distribution. Each individual face in the
face set can then be approximated by a linear combination of the eigenvectors.
Since the face reconstruction by its principal components is an approximation,
a residual reconstruction error is defined in the algorithm as a measure of face-
ness. The residual reconstruction error which they termed as “distance-from-face
space”(DFFS) gives a good indication of the existence of a face [5]. Moghaddam
and Pentland have further developed this technique within a probabilistic frame-
work [6].

PCA is an appropriate way of constructing a subspace for representing an
object class in many cases, but it is not necessarily optimal for distinguishing
between the face class from the non-face class. Face space might be better repre-
sented by dividing it into subclasses, and several methods have been proposed for
doing this. Sung and Poggio proposed the mixture of multidimensional Gaussian
model and they used an adaptively changing normalized Mahalanobis distance
metric [7]. Afterward, many face space analysis algorithms have been investi-
gated and some of them have outstanding performance. The problem of the
PCA related approaches lies in the selection of eigenvectors. They may not be
the optimal ones for representing the face features. Moreover, a threshold value
should be selected properly considering the verification rate and false alarm rate.
By employing QEA, the performance of the face verification is improved enough
to distinguish between face images and non-face images.

In this paper, eigenfaces are constructed based on PCA and a set of weight
factors is selected by using Quantum-inspired Evolutionary Algorithm (QEA)
[8]. QEA has lately become a subject of special interest in evolutionary compu-
tation. It is based on the concept and principles of quantum computing such as a
quantum bit and superposition of states. Instead of binary, numeric or symbolic
representation, it uses a Q-bit as a probabilistic representation. Its performance
was tested on the knapsack problem, which produced on outstanding result [8].

This paper is organized as follows. Section 2 describes QEA briefly. Section
3 presents the PCA and density estimation. Section 4 presents how the QEA is
applied to optimize the decision boundary between face images and non-face
images. Section 5 presents the experimental results and discussions. Finally,
conclusion and further works follow in Section 6.

2 Quantum-Inspired Evolutionary Algorithm (QEA)

QEA [8] can treat the balance between exploration and exploitation more easily
when compared to conventional GAs (CGAs). Also, QEA can explore the search
space with a small number of individuals (even with only one individual for
real-time application) and exploit the global solution in the search space within
a short span of time. QEA is based on the concept and principles of quantum
computing, such as a quantum bit and superposition of states. However, QEA
is not a quantum algorithm, but a novel evolutionary algorithm. Like other
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Procedure QEA
begin

t← 0
i) initialize Q(t)
ii) make P (t) by observing the states of Q(t)
iii) evaluate P (t)
iv) store the best solutions among P (t) into B(t)

while (not termination condition) do
begin

t← t + 1
v) make P (t) by observing the states of Q(t− 1)
vi) evaluate P (t)
vii) update Q(t) using Q-gates
viii) store the best solutions among B(t− 1) and P (t) into B(t)
ix) store the best solution b among B(t)
x) if (global migration condition)

then migrate b to B(t) globally
xi) else if (local migration condition)

then migrate bt
j in B(t) to B(t) locally

end
end

Fig. 1. Procedure of QEA.

evolutionary algorithms, QEA is also characterized by the representation of the
individual, the evaluation function, and the population dynamics.

QEA is designed with a novel Q-bit representation, a Q-gate as a variation
operator, an observation process, a global migration process, and a local migra-
tion process. QEA uses a new representation, called Q-bit, for the probabilistic
representation that is based on the concept of qubits, and a Q-bit individual
as a string of Q-bits. A Q-bit is defined as the smallest unit of information in
QEA, which is defined with a pair of numbers, (α, β), where |α|2 + |β|2 = 1.
|α|2 gives the probability that the Q-bit will be found in the ‘0’ state and |β|2
gives the probability that the Q-bit will be found in the ‘1’ state. A Q-bit may
be in the ‘1’ state, in the ‘0’ state, or in a linear superposition of the two. A
Q-bit individual is defined as a string of m Q-bits. QEA maintains a population
of Q-bit individuals, Q(t) = {qt

1,q
t
2, · · · ,qt

n} at generation t, where n is the size
of population, and qt

j , j = 1, 2, · · · , n, is a Q-bit individual.
Fig. 1 shows the standard procedure of QEA. The procedure of QEA is

explained as follows:
i) In the step of ‘initialize Q(t),’ α0

i and β0
i , i = 1, 2, · · · , m, of all q0

j , are
initialized to 1√

2
. It means that one Q-bit individual, q0

j represents the linear
superposition of all possible states with the same probability.

ii) This step generates binary solutions in P (0) by observing the states of
Q(0), where P (0) = {x0

1,x
0
2, · · · ,x0

n} at generation t = 0. One binary solution,
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x0
j , is a binary string of length m, which is formed by selecting either 0 or 1 for

each bit by using the probability, either |α0
i |2 or |β0

i |2 of q0
j , respectively.

iii) Each binary solution x0
j is evaluated to give a level of its fitness.

iv) The initial best solutions are then selected among the binary solutions,
P (0), and stored into B(0), where B(0) = {b0

1,b
0
2, · · · ,b0

n}, and b0
j is the same

as x0
j at the initial generation.

v, vi) In the while loop, binary solutions in P (t) are formed by observing
the states of Q(t − 1) as in step ii), and each binary solution is evaluated for
the fitness value. It should be noted that xt

j in P (t) can be formed by multiple
observations of qt−1

j in Q(t − 1).
vii) In this step, Q-bit individuals in Q(t) are updated by applying Q-gates

defined as a variation operator of QEA. The following rotation gate is used as a
basic Q-gate in QEA:

U(∆θi) =
[

cos(∆θi) − sin(∆θi)
sin(∆θi) cos(∆θi)

]
, (1)

where ∆θi, i = 1, 2, · · · , m, is a rotation angle of each Q-bit. ∆θi should be
designed in compliance with the application problem.

viii, ix) The best solutions among B(t − 1) and P (t) are selected and stored
into B(t), and if the best solution stored in B(t) is a better solution fitting than
the stored best solution b, the stored solution b is replaced by the new one.

x, xi) If a global migration condition is satisfied, the best solution b is mi-
grated to B(t) globally. If a local migration condition is satisfied, the best one
among some of the solutions in B(t) is migrated to them. The migration condi-
tion is a design parameter, and the migration process can induce a variation of
the probabilities of a Q-bit individual. A local-group in QEA is defined to be the
subpopulation affected mutually by a local migration, and a local-group size is
the number of the individuals in a local-group. Until the termination condition
is satisfied, QEA is running in the while loop.

3 PCA and Density Estimation

In this section, we present the PCA concept and density estimation using Gaus-
sian densities. It should be noted that this method is a basic technique in pattern
recognition and it lays the background of this study.

3.1 PCA Concept

A technique commonly used for dimensionality reduction is PCA. In the late
1980’s, Sirovich and Kirby [9] efficiently represented human faces using PCA
and it is currently a popular technique.

Given a set of m×n pixels images {I1,I2, . . . ,IK} , we can form a set of 1-D
vectors X ={x1,x2, . . . ,xK}, where xi ∈ �N=mn, i = 1, 2, . . . , K. The basis
functions for the Karhunen-Loeve Transform(KLT) [10] are obtained by solving
the eigenvalue problem

Λ = ΦT ΣΦ (2)
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Fig. 2. Two subspaces

where Σ is the covariance matrix of X, Φ is the eigenvector matrix of Σ, and
Λ is the corresponding diagonal matrix of eigenvalues. We can obtain M largest
eigenvalues of the covariance matrix and their corresponding eigenvectors. Then
feature vector is given as follows:

y = ΦT
M x̃ (3)

where x̃ = x− x̄ is the difference between the image vector and the mean image
vector, and ΦM is a submatrix of Φ containing the M largest eigenvectors. These
principal components preserve the major linear correlations in the given set of
image vectors. By projecting to ΦT

M , original image vector x is transformed to
feature vector y. It is a linear transformation which reduces N dimensions to M
dimensions as follows:

y = T (x) : �N −→ �M . (4)

By selecting M largest eigenvectors, we can obtain two subspaces. One is the
principal subspace (or feature space) F containing the principal components,
and another is the orthogonal space F̄ . These two spaces are described in Fig.
2, where DFFS stands for “distance-from-feature-space” and DIFS “distance-in-
feature-space”.
In a partial KL expansion, the residual reconstruction error is defined as

ε2(x) =
N∑

i=M+1

y2
i = ‖x̃‖2 −

M∑
i=1

y2
i (5)

and this is the DFFS as stated before which is basically the Euclidean distance.
The component of x which lies in the feature space F is referred to as the DIFS.

3.2 Density Estimation

In the previous subsection, we obtained DFFS and DIFS. DFFS is an Euclidean
distance, but DIFS is generally not a distance norm. However, it can be inter-
preted in terms of the probability distribution of y in F . Moghaddam estimated
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DIFS as the high-dimensional Gaussian densities [6]. This is the likelihood of an
input image vector x formulated as follows:

P (x|Ω) =
exp[− 1

2 (x − x̄)T Σ−1(x − x̄)]
(2π)N/2|Σ|1/2 (6)

where Ω is a class of the image vector x. This likelihood is characterized by the
Mahalanobis distance

d(x) = (x − x̄)T Σ−1(x − x̄) (7)

and it can be also calculated efficiently as follows:

d(x) = x̃T Σ−1x̃

= x̃T [ΦΛ−1ΦT ]x̃

= yT Λ−1y

=
N∑

i=1

y2
i

λi

(8)

where λ is the eigenvalue of the covariance matrix. Now, we can divide this
distance into two subspaces. It is determined as

d(x) =
M∑
i=1

y2
i

λi
+

N∑
i=1+M

y2
i

λi
. (9)

It should be noted that the first term can be computed by projecting x onto
the M -dimensional principal subspace F . However, the second term cannot be
computed explicitly in practice because of the high-dimensionality. So, we use
the residual reconstruction error to estimate the distance as follows:

d̂(x) =
M∑
i=1

y2
i

λi
+

1
ρ

N∑
i=M+1

y2
i

=
M∑
i=1

y2
i

λi
+

ε2(x)
ρ

.

(10)

The optimal value of ρ can be determined by minimizing a cost function, but
ρ = 1

2λM+1 may be used as a thumb rule [11].
Finally, we can extract the estimated probability distribution using (6) and

(10). The estimated form is determined by

P̂ (x|Ω) =
exp

(
− 1

2

∑M
i=1

y2i
λi

)

(2π)M/2
∏M

i=1 λ
1/2
i

·
exp

(
− ε2(x)

2ρ

)
(2πρ)(N−M)/2

= PF (x|Ω) · P̂F̄ (x|Ω).

(11)
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Using (11), we can distinguish the face class from the non-face class by setting a
threshold value for P̂ (x|Ω), which is the Maximum Likelihood (ML) estimation
method. In this case, the threshold value becomes the deciding factor between
the verification rate and false alarm rate. If the threshold value is too low, the
verification rate would be quite good but the false alarm rate would also increase.
For this reason, the threshold value has to be carefully selected.

In the following section, we propose an optimization procedure for selecting
a set of eigenvalues to determine the decision boundary between the face and
non-face classes. By optimizing the Mahalanobis distance term in (11) under the
given threshold value, we can find a better distance measure and need not refer
to the threshold value.

4 Optimization of Decision Boundary

In this section, we describe a framework for decision boundary optimization
using QEA. In the case of ML estimation, the decision boundary is determined
by a probability equation and an appropriate threshold value. To improve the
performance of the verification rate and reduce the false alarm rate, we attempt
to find a better decision boundary.

The Mahalanobis distance-based probability guarantees quite good perfor-
mance, but it is not optimal. In (11), an eigenvalue is used as the weight factor
of the corresponding feature value. These weight factors can be optimized on a
training data set. To perform the optimization, we construct the training data
set. It consists of two classes: face class (positive data) and non-face class (neg-
ative data). Fig. 3 shows an example of a face training data set. A non-face
training data set consists of arbitrarily chosen images, including randomly gen-
erated images.

To search for the weight factors, QEA is used. The number of weight factors
to be optimized is M , which is the same as the number of principal components.
Using the weight factors obtained by QEA, we can compute the probability
distribution as follows:

Fig. 3. Example of the face training data set
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Popt(x|Ω) =
exp

(
− 1

2

∑M
i=1

y2i
ωi

)

(2π)M/2
∏M

i=1 λ
1/2
i

·
exp

(
− ε2(x)

2ρ

)
(2πρ)(N−M)/2 . (12)

It is the same as (11) except for the weight factors ωi, i = 1, 2, . . . , M . To apply
(12) to face verification, the threshold value should be assigned. But, since QEA
yields optimized weight factors to the predetermined threshold value, we need
not assign the threshold value.

To evaluate the fitness value, we calculate the score. The score is added by +1
for every correct verification. The score is used as a fitness measure considering
both the verification rate (P score) and the false alarm rate (N score) because
the training data set consists of both face and non-face data. Then the fitness is
evaluated as

Fitness = P score + N score (13)

where P score is for the face class (positive data) and N score is for the non-face
class (negative data). Using this fitness function, we can find the optimal weight
factors for training data set under the predetermined threshold value.

5 Experimental Results and Discussions

We constructed 3 types of database for the experiment. First, 70 face images
were used for extracting principal components. Second, 560 images (280 images
for face and 280 images for non-face) were used for training weight factors. Third,
1568 images (784 images for face and 784 images for non-face) were used for the
generalization test.

All images are 50×50 pixels with 256 gray levels. We chose 50 principal
components from the 70 face images. For pre-processing, histogram equalization
was performed to normalize the lighting condition.

Positive data were produced from the face region of the AR face database
[12]. An example of a face training data set is shown in Fig. 3. Variations of
the facial expression and illumination were allowed. Negative data consisted of
both randomly generated images and natural images excluding the face images.
Position-shifted face images and different-scale face images were also included
as negative data.

The following boundary of each weight factor was considered as a domain
constraint:

0.1λi < ωi < 10λi, (1 ≤ i ≤ 50). (14)

By setting the constraint of the boundary using the eigenvalue, it becomes a con-
straint optimization problem. We performed QEA for 560 training images using
the parameters in Table 1. In (1), rotation angles should be selected properly. For
each Q-bit, θ1 = 0, θ2 = 0, θ3 = 0.01π, θ4 = 0, θ5 = −0.01π, θ6 = 0, θ7 = 0, θ8 = 0
were used.

The termination condition was given by the maximum generation. The per-
fect score was 560 points. If the score does not reach 560 points before maximum
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Table 1. Parameters for QEA

Parameters No.
Population size 15
No. of variables 50
No. of Q-bits per variable 10
No. of observations 2
Global migration period 100
Local migration period 1
No. of individuals per group 3
Max. generation 2000

Table 2. Results for generalization test

P score Verification N score False Alarm Fitness
(784) rate(%) (784) rate(%) (1568)

DFFS classifier 726 92.60 716 0.087 1442
ML classifier 728 92.86 726 0.074 1454
QEA-based classifier 741 94.52 740 0.056 1481

generation, the evolution process stops at maximum generation. After the search-
ing procedure, we performed a generalization test to 1568 images using the weight
factors obtained by QEA. We also compared the results with the DFFS and the
ML classifier. For the DFFS and the ML classifier, we selected the threshold
value that provoked the best score. For QEA-based classifier, we used the same
threshold value set for the ML classifier. It should be noted that there is no need
to choose a threshold value for better performance in our classifier because the
weight factors have been already optimized under the predetermined threshold
value.

Table 2 shows the results for the generalization test. The results show that
the proposed method performs better than the DFFS or the ML classifier.
The results described above suggest that the QEA-based classifier works well
not only in terms of the verification rate (P score), but also in terms of the
false alarm rate (N score). The verification rate of the QEA-based classifier was
1.66% higher than that of the ML classifier. The false alarm rate was 0.018%
lower than that of the ML classifier. The advantage of the proposed classifier is
that more training data can improve its performance.

6 Conclusion and Further Works

In this paper, we have proposed a decision boundary optimization method for
face verification using QEA. The approach is basically related to eigenspace
density estimation technique. To improve the previous Mahalanobis distance-
based probability, we have used a new distance which consists of the weight
factors optimized at the training set. The proposed face verification system has



2156 J.-S. Jang, K.-H. Han, and J.-H. Kim

been tested by face and non-face images extracted from AR database, and very
good results have been achieved both in terms of the face verification rate and
false alarm rate.

The advantage of our system can be summarized in two aspects. First, our
system does not need an exact threshold value to perform optimally. We only
need to choose an appropriate threshold value and QEA will find the optimal
decision boundary based on the threshold value. Second, our system can be
adapted to various negative data. A fixed structured classifier such as the ML
classifier can not change its character in frequently failure situation. But our
system can be adapted to this case by reconstructing the training data and
following the optimization procedure.

As a future research, we will construct face detection system using this verifi-
cation method. In face detection, it is clear that verification performance is very
important. Most of the image-based face detection approaches apply a window
scanning technique. It is an exhaustive search of the input image for possible
face locations at all scales. In this case, overlapping detection arises easily. A
powerful verification method is therefore needed to find exact face locations. We
expect that our verification method will also work well for the face detection
task.
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