
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.3 MARCH 2003
645

LETTER

A Quantum-Inspired Evolutionary Computing Algorithm

for Disk Allocation Method

Kyung-Ho KIM†, Joo-Young HWANG†, Kuk-Hyun HAN††, Jong-Hwan KIM††, Nonmembers,
and Kyu-Ho PARK†, Regular Member

SUMMARY Based on a Quantum-inspired Evolutionary Al-
gorithm (QEA), a new disk allocation method is proposed for
distributing buckets of a binary cartesian product file among
unrestricted number of disks to maximize concurrent disk I/O.
It manages the probability distribution matrix to represent the
qualities of the genes. Determining the excellent genes quickly
makes the proposed method have faster convergence than DAGA.
It gives better solutions and 3.2 – 11.3 times faster convergence
than DAGA.
key words: partial match queries, optimal disk allocation,
quantum-inspired evolutionary algorithm

1. Introduction

Today, large databases are used for application areas
such as web servers, spatial databases and large knowl-
edge bases. Large databases require very large amount
of data which is difficult to store and access efficiently.
Distributing a large file onto multiple disks and access-
ing them in parallel make it possible to enhance the
performance of the large databases.

This paper proposes an efficient disk allocation
method for partial match queries on large binary carte-
sian product files. The disk allocation problem is to dis-
tribute the buckets of multi-attribute files among mul-
tiple disks with the purpose of minimizing the average
response time of all partial match queries.

The problem of finding optimal bucket distribution
is known to be NP-hard [1] and heuristic approaches
have been proposed [1]–[4]. In [4], it is shown that
DAGA gives the best solution among the heuristic ap-
proaches if the number of disks is not restricted. DAGA
is based on a genetic algorithm. In the genetic al-
gorithm, evolution status is represented by a popu-
lation which consists of encoded solutions (chromo-

Manuscript received May 20, 2002.
Manuscript revised September 4, 2002.

†The authors are with the Computer Engineering Re-
search Laboratory, Department of Electrical Engineering
and Computer Science [Division of Electrical Engineering],
Korea Advanced Institute of Science and Technology, 373-
1 Guseong-dong Yuseong-gu, Daejon, 305–701, Republic of
Korea.

††The authors are with the Robot Intelligence Technol-
ogy Laboratory, Department of Electrical Engineering and
Computer Science [Division of Electrical Engineering], Ko-
rea Advanced Institute of Science and Technology, 373-1
Guseong-dong Yuseong-gu, Daejon, 305–701, Republic of
Korea.

somes). The population evolves by simple operations
such as reproduction, crossover and mutation of the so-
lutions [5]. The excellent genes remain in the solutions
selected based on the law of the survival of the fittest.
The genetic algorithm is so general that it can be ap-
plied to various problems. However, its converging time
is too long due to the control based on the chromosomes
not on the genes.

In [6], Han and Kim proposed a Quantum-inspired
Evolutionary Algorithm (QEA) whose convergence is
faster than that of the conventional genetic algorithms.
It is an evolutionary algorithm which is similar to the
genetic algorithm. Its evolution status representation
and evolution process are more efficient than those of
the genetic algorithm. The evolution status of QEA is
represented by a probability distribution matrix which
represents the qualities of the genes. A population is
sampled based on the probability distribution matrix
and is evaluated. By using an insight to a given prob-
lem, excellent genes are determined and their probabil-
ities are increased, which makes the converging time of
QEA faster than that of the genetic algorithms.

In this paper, we propose QEA-based Disk alloca-
tion Method (QDM) of buckets in a binary cartesian
product file among multiple disks to minimize the av-
erage response time of all the partial match queries on
the file. QDM gives better solutions than DAGA and
QDM is 3.2 – 11.3 times faster than DAGA for gener-
ating the solutions of equal quality.

2. Problem Definition

To describe the disk allocation problem, we introduce
some necessary definitions.

Let {X1, X2, · · · , Xn} be a set of attributes. Each
attribute Xi is associated with a domain, denoted Di.
For a given number, k, each domain Di is partitioned
into k disjoint subsets, Di1, Di2, · · · , Dik. A file is a
finite subset of the cartesian product D1 × · · · ×Dn.
An element of a file is called a record. A k-ary carte-
sian product file is a file whose records are stored in
kn buckets such that all records in every bucket are in
D1j1×· · ·×Dnjn , where 1≤ji≤k for 1≤ i≤n.

In case of a binary cartesian product file, each
bucket is denoted by a binary string [j1j2 · · · jn], where
j1, j2, · · · , jn are bits. An n-attribute binary cartesian

646
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.3 MARCH 2003

Fig. 1 Disk allocation problem: Example.

product file consists of 2n buckets. A partial match
query is a query of the form q : (a1, a2, · · · , an), where
ai is 0, 1, or ∗ (unspecified). The response set of a query
q, denoted as R(q), is the set of buckets that qualify for
q. The response time of a query q is defined as the
maximum among N q

0 , N q
1 , . . . , N q

m−1, where N q
i is the

number of qualifying buckets on disk i for the query q.
An example of 4-attribute binary cartesian prod-

uct file is given in Fig. 1. For a query q = (0, 1, ∗, ∗),
the response set, R(q), is {[0100], [0101], [0110], [0111]}.
The bucket [0110] is allocated to disk 1, the bucket
[0111] to disk 2, and the two buckets [0100] and [0101]
to disk m − 1. Those qualifying buckets will be ac-
cessed from the multiple disks and the response time
is 2. If all of the qualifying buckets are allocated to
different disks, the response time will be reduced to 1.
The problem is stated as follows.
Problem Definition

Given an n-attribute binary cartesian product file
and m disks, allocate all buckets onto m disks to
minimize the average response time for all partial
match queries.

3. Related Work: DAGA

In DAGA, the 2n buckets are allocated to the 2n posi-
tions that are mapped to the m disks in a round-robin
manner. A solution consists of 2n genes where the i-th
gene represents the bucket allocated to the i-th posi-
tion. An example of DAGA’s solution for n = 3 and
m = 3 is given in Table 1. In solution 1, buckets 5, 0, 6
are allocated to disk 0, buckets 4, 7, 2 to disk 1 and
buckets 3,1 to disk 2.

Initial population consisting of Np solutions is cre-
ated, the quality of all the solutions are evaluated, and
the next generation is generated using the genetic evo-
lution process including reproduction, crossover, and

Table 1 Solution examples in DAGA when n = 3 and m = 3.

Position 0 1 2 3 4 5 6 7

Solution 1 5 4 3 0 7 1 6 2

Table 2 Probability distribution matrix of QDM where Γi,j

is the probability for the i-th bucket to be allocated to the j-th
disk.

Disk
Bucket

0 1 · · · 2n− 1

0 Γ0,0 Γ1,0 · · · Γ2n−1,0

1 Γ0,1 Γ1,1 · · · Γ2n−1,1

...
...

m− 1 Γ0,m−1 Γ1,m−1 · · · Γ2n−1,m−1

mutation. The reproduction is to select Np solutions
randomly in the current population. The solutions with
higher fitness values are more likely to be selected than
the solutions with lower fitness. The crossover oper-
ation is to exchange the genes of two solutions. The
mutation operation is to modify the genes of a solution
randomly. The procedure described above is repeated
until a termination condition is met.

The quality is measured at the level of solution in
DAGA. Therefore, bad genes remain in the solution al-
though the fitness of the solution is high. If the quality
is measured at the level of genes, the excellent genes
are determined quickly, so the convergence is acceler-
ated. The proposed QEA-based disk allocation method
manages the probability distribution matrix to repre-
sent the qualities of the genes. Determining the excel-
lent genes quickly makes QDM have faster convergence
than DAGA.

4. QEA-Based Disk Allocation Method

In QDM, the evolution status is represented by a 2n×m
probability distribution matrix as in Table 2 where (i, j)
entry, Γi,j , is the probability for the i-th bucket to be
allocated to the j-th disk. Initially, all the probabilities
are set to 1

m . A solution of QDM consists of 2n genes
where the i-th gene represents the disk to which the i-th
bucket is allocated. The disk for a bucket is randomly
selected based on the probability distribution matrix.
For evenly distribution of the buckets on the disks, the
order of the buckets to allocate is randomized and the
maximum number of the buckets allocated to a disk is
restricted to � 2n

m 	.
A solution, S, has the fitness value, f(S), defined

as 1/Tavg(S) where Tavg(S) is the average response
time of S for partial match queries. For an n-attributed
binary cartesian product file, there exist 3n queries, but
the response time is always 1 for the queries with all
the specified bits and � 2n

m 	 for the query with all the
unspecified bits. Thus, the number of queries to con-
sider is (3n − 2n − 1) and the fitness function is defined

LETTER
647

Table 3 Solution examples in QDM when n = 3 and m = 3.

Bucket 0 1 2 3 4 5 6 7 f

Solution 1 0 2 1 2 1 0 0 1 0.72

Solution 2 0 2 2 2 1 1 0 0 0.62

Algorithm 1 QDM Procedure
Initializing probability distribution matrix
Generating the solutions
Evaluation
Storing the best solution to S
while not termination-condition do

Generating the solutions
Evaluation
Updating probability distribution matrix
Storing the best solution to S

end while

as Eq. (1).

f(S)=(Tavg(S))−1

=

(
3n−2n−1∑

r=1

pr ·max{N qr

0 |S ,N qr

1 |S , · · · , N qr

m−1|S}
)−1

,

(1)

where N qr

j |S is the number of qualifying buckets on the
j-th disk for the partial query qr in the case of S and
pr is the access probability for qr. In the case of evenly
distributed query load, pr for all r is (3n − 2n − 1)−1.

Table 3 shows the solution examples when n = 3
and m = 3. In solution 1, buckets 0, 5, 6 are allocated
to disk 0, buckets 2, 4, 7 to disk 1 and buckets 1, 3 to
disk 2, and its fitness is 0.72.

The overall process of QDM is described in Algo-
rithm 1. At each iteration, Np solutions are generated
based on the probability distribution matrix, the fit-
ness values of the solutions are evaluated by the fitness
function, f , and the probability distribution matrix is
updated. At the k-th iteration, the probability distri-
bution matrix is updated by comparing the solutions of
the k-th iteration with the solution, S which is the best
solution until the (k−1)-th iteration. The gene of a so-
lution is heterogeneous if its value is different from that
of the corresponding gene of S. When the i-th gene
of a solution is heterogeneous and its value is si, Γi,si

is decreased (increased) if the fitness of the solution is
lower (higher) than that of S.

For example, assuming that solution 1 in Table 3 is
S with the fitness value of 0.72, the probability distri-
bution matrix for solution 2 in Table 3 with the fitness
value of 0.62 is updated as follows. The heterogeneous
genes of the solution are the 2nd, the 5th and the 7th
genes. Since the fitness of solution 2 is lower than that
of S, the probabilities corresponding to the values of
the heterogeneous genes (Γ2,2, Γ5,1, Γ7,0) are decreased
and the 2nd, the 5th and the 7th column vectors are

Table 4 Probability distribution matrix after 50 iterations
when n = 3 and m = 3.

Disk
Bucket

0 1 2 3 4 5 6 7

0 0.85 0.07 0.06 0.08 0.02 0.92 0.92 0.08
1 0.05 0.22 0.89 0.08 0.75 0.03 0.02 0.89
2 0.1 0.71 0.05 0.84 0.23 0.05 0.06 0.03

Algorithm 2 Updating probability distribution matrix
for a solution, S

�f = f(S)− f(S)
�d = the number of heterogeneous genes which are genes of S
different from the genes of S
if �f ≤ 0 then

for i = 0 to 2n−1 do
if si �= si then

Γi,j ← U(i, si, µ1)
end if

end for
else

for i = 0 to 2n−1 do
if si �= si then

Γi,j ← U(i, si,−µ2 ·�f
�d

)

end if
end for

end if
Normalizing probability distribution matrix to be

∑m−1

j=0
Γi,j =

1 for all i

normalized. The amount of the decrease for the proba-
bility is proportional to the difference between the fit-
ness values of S and S, �f , and inversely proportional
to the number of heterogeneous genes, �d.

The algorithm of updating the probability distri-
bution matrix for a solution, S, is described in Algo-
rithm 2 where si and si are the values of the i-th gene
in S and S, respectively. The update function, U , is de-
fined as Eq. (2), where a positive µ returns the increased
Γi,j and negative µ returns the decreased Γi,j . Higher
|µ| leads to more change of Γi,j . In the algorithm, µ1

and µ2 are constant values obtained experimentally.

U(i, j, µ)=
{
Γi,j+(1−Γi,j)×µ, if 0≤µ≤1,
Γi,j−Γi,j×|µ|, if −1≤µ<0. (2)

Table 4 shows the probability distribution matrix
at the 50th iteration when n = 3 and m = 3. µ1

and µ2 are 0.2 and 0.1, respectively. S at the 50th
iteration is {0,2,1,2,1,0,0,1} which is near to the known
optimal solution, {0,1,1,2,2,0,0,1}. The probabilities
corresponding to the 1st gene and the 4th gene are not
converged yet and the other genes are almost converged
to the optimal values.

5. Experiments

The performance of QDM is compared with that of
DAGA. All parameters of DAGA are adjusted as de-
scribed in [4]. For QDM, the coefficients of the proba-
bility distribution matrix update function in Algorithm

648
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.3 MARCH 2003

Fig. 2 Mean values of Tavgs with respect to iteration when
n = 5 and m = 12.

2, µ1 and µ2, are adjusted to be 0.1 and 0.05, respec-
tively. The numbers of sample solutions, Np, for both
methods are 50, 100 and 100 for n = 5, 6 and 7, re-
spectively. Experiments are done for the various com-
binations of the number of disks and the number of
attributes. The number of attributes, n, is varied from
5 to 7 and the number of disks, m, is varied from 4 to
16.

Two experiments are performed. In the first ex-
periment, QDM and DAGA are configured to termi-
nate after a specific number of iterations. To compare
the convergence behaviors of the methods, the quali-
ties of the solutions at the same number of iterations
are compared. The second experiment compares the
speeds of the methods to obtain the solutions with the
same quality. Both methods are configured to termi-
nate when their solutions satisfy that the average query
response time is less than a specific target value.

In the first experiment, QDM and DAGA termi-
nate after the same iterations which are 3,000, 6,000
and 6,000 iterations for n = 5, 6 and 7, respec-
tively. The experiments show that QDM converges
more quickly than DAGA. The average query response
times of the best solutions found during the interme-
diate iterations are plotted in Fig. 2 which shows only
the case of n = 5 and m = 12. As the number of it-
erations increases, the average query response time of
QDM decreases more steeply than that of DAGA. The
best solution found during the iterations is output as
the final solution.

Both methods are run 30 times for each combi-
nation of the number of disks and the number of at-
tributes. All the minimum average query response
times of QDM are equal to or less than those of
DAGA. The means and deviations of QDM are also
less than those of DAGA. For illustration, those val-
ues at the 3000th iteration for the cases of n = 5 and
m = 4, 6, . . . , 16 are shown in Table 5.

In the second experiment, the number of itera-
tions to obtain the solutions with target average re-

Table 5 Minimum, mean and deviation of query response time
for n = 5 after 3000 iterations.

No. of Minimum Mean Deviation

Disks TQDM TDAGA TQDM TDAGA σQDM σDAGA

4 1.4095 1.4095 1.4619 1.5406 0.036 0.081
6 1.3286 1.3286 1.3431 1.3557 0.009 0.011
8 1.0857 1.1048 1.1240 1.1974 0.026 0.033
10 1.0857 1.0857 1.0917 1.1269 0.010 0.018
12 1.0714 1.0714 1.0833 1.0923 0.006 0.008
14 1.0619 1.0667 1.0690 1.0754 0.003 0.004
16 1.0000 1.0095 1.0062 1.0436 0.004 0.066

Fig. 3 The number of iterations of QDM and DAGA for gen-
erating the target solutions for n = 5.

sponse times are measured†. The target average re-
sponse times are adjusted to be the mean values of the
final solutions of DAGA obtained in the first experi-
ment. The numbers of iterations are plotted in Fig. 3
for the cases of n = 5 and m = 4, 6, . . . , 16. QDM
requires 3.2 – 11.3 times smaller numbers of iterations
than DAGA to find the solutions with the average query
response times less than the same target values.

6. Conclusion

The disk allocation problem is to distribute buckets of a
multi-attribute file among multiple disks with the pur-
pose of minimizing the average response time of all par-
tial match queries. The previous best method, DAGA
is based on a genetic algorithm and its converging time
is too long [4]. In this paper, we proposed a QEA-based
disk allocation method called QDM. It manages the
probability distribution matrix to represent the quali-
ties of the genes and evaluates the qualities of the genes
from the sampled solutions. Determining the excellent
genes quickly makes QDM have faster convergence than
DAGA. Our experiments show that the average query

†The run times of each iteration for both QDM and
DAGA are the same because more than 90% of the com-
puting time is spent in calculating the fitness values and
the algorithms’ overhead is very small. So, the number of
iterations is used for comparing the run times of the algo-
rithms.

LETTER
649

response times of QDM are equal to or less than those
of DAGA and the convergence of QDM is 3.2 – 11.3
times faster than that of DAGA.

Acknowledgment

This work has been supported by National Research
Laboratory Project of the Korea Ministry of Science
and Technology.

References

[1] Y.Y. Sung, “Parallel searching for binary cartesian prod-
uct files,” Proc. 1985 ACM Computer Science Conference,

pp.163–172, 1985.
[2] K.A.S. Abdel-Ghaffar, “Optimal disk allocation for partial

match queries,” ACM Trans. Database Systems, vol.18, no.1,
pp.132–156, 1993.

[3] M. Kim and S. Pramanik, “Optimal file distribution for par-
tial match retrieval,” Proc. 1988 ACM International Confer-
ence on Management of Data, pp.173–182, 1988.

[4] D.Y. Ahn and K.H. Park, “Disk allocation methods using
genetic algorithm,” IEICE Trans. Inf. & Syst., vol.E82-D,
no.1, pp.291–300, Jan. 1999.

[5] D. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning, Addison-Wesley, 1989.

[6] K.-H. Han and J.-H. Kim, “Quantum-inspired evolutionary
algorithm for a class of combinatorial optimization,” IEEE
Trans. Evol. Comput., vol.6, no.6, pp.580–593, 2002.

