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Abstract

This paper proposes a novel face verification method using principal components analysis (PCA) and evolutionary

algorithm (EA). Although PCA related algorithms have shown outstanding performance, the problem lies in making

decision rules or distance measures. To solve this problem, quantum-inspired evolutionary algorithm (QEA) is

employed to find out the optimal weight factors in the distance measure for a predetermined threshold value which dis-

tinguishes between face images and non-face images. Experimental results show the effectiveness of the proposed

method through the improved verification rate and false alarm rate.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Face detection is one of the visual tasks which

human can do easily. However, computer is not
good at this task. In computer vision terms, this

task can be defined as follows: given a still or video

image, detect and localize an unknown number of

faces. These subtasks include segmentation,
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extraction and verification of faces. Face verifica-

tion is the task which discriminate between face

and non-face, while face detection is locating the

face in some images. In general, face verification
algorithm is employed to face detection task by

window scanning technique. In this paper, our

focus is the verification of frontal face images.

Most approaches to face verification fall into

one of two categories. They are either based on

local features or on holistic templates. In the

former category, facial features such as eyes,

mouth and some other constraints are used to ver-
ify face patterns. In the latter category, 2-D images
ed.
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are directly classified into face groups using pat-

tern recognition algorithms.

We focus on the face verification under the

holistic approach. The basic approach in verifying

face patterns is a training procedure which classifies
examples into face and non-face prototype cate-

gories. The simplest holistic approaches rely on

template matching, but these approaches have

poor performance.

The first neural network approach to face veri-

fication was based on multi-layer perceptrons

(Propp and Samal, 1992), and advanced algo-

rithms were studied by Rowley et al. (1998). The
neural network was designed to look through a

window of 20 · 20 pixels and was trained by face

and non-face data. Based on window scanning

technique, the face detection task was performed.

It means that face verification network was applied

to input image for possible face locations at all

scales.

One of the most famous methods among holis-
tic approaches is principal components analysis

(PCA), which is well known as eigenfaces (Turk

and Pentland, 1991). Given an ensemble of differ-

ent face images, the technique first finds the princi-

pal components of the face training data set,

expressed in terms of eigenvectors of the covari-

ance matrix of the face vector distribution. Each

individual face in the face set can then be approx-
imated by a linear combination of the eigenvec-

tors. Since the face reconstruction by its principal

components is an approximation, a residual recon-

struction error is defined in the algorithm as a

measure of faceness. The residual reconstruction

error which they termed as ‘‘distance-from-face

space’’(DFFS) gives a good indication of the exist-

ence of a face (Pentland et al., 1994). Moghaddam
and Pentland (1997) further developed this tech-

nique within a probabilistic framework.

PCA is an appropriate way of constructing a

subspace for representing an object class in many

cases, but it is not necessarily optimal for distin-

guishing between the face class and the non-face

class. Face space might be better represented by

dividing it into subclasses. Several methods have
been proposed for doing this. Sung and Poggio

(1998) proposed the mixture of multidimensional

Gaussian model. They used an adaptively chang-
ing normalized Mahalanobis distance metric.

Afterward, many face space analysis algorithms

have been investigated and some of them have out-

standing performance. But the problem of the

PCA-related approaches lies in making decision
rules or distance measures. They may not be the

optimal ones for distinguishing between face

images and non-face images. Moreover, a thres-

hold value should be selected properly considering

the verification rate and false alarm rate. To solve

such a complex problem, evolutionary algorithm

(EA) is an efficient tool. EA has powerful search

and optimization performance in a complex
problem.

EA is a probabilistic algorithm which maintains

a population of individuals. In any evolutionary

algorithm, each individual represents a potential

solution to the problem at hand and is imple-

mented as some data structure (e.g. chromosome).

Each solution is evaluated to give some measure of

fitness. Then, a new population is formed by
selecting the fitter individuals. Some variation

operators change the population to form new solu-

tions. After repeating these procedures the best

individual converges to a sub-optimal solution.

Prakash and Murty (1995) studied optimal sub-

set of principal component selection and applied

to vowel recognition. They used genetic algorithm

to select the principal components which maxi-
mize the recognition rate. Liu and Wechsler

(2000) proposed a different approach to maximize

the recognition rate using evolutionary algorithm.

They attempted to find optimal basis for the

dual purpose of data compression and pattern

classification.

In this paper, we propose a novel evolutionary

approach to improve the PCA-based classifier for
face verification. We apply evolutionary algorithm

such as quantum-inspired evolutionary algorithm

(QEA) (Han and Kim, 2004) to search for the opti-

mal weight factors in the distance measure, while

previous studies focussed on the selection or the

modification of the basis vectors. Eigenfaces are

constructed based on PCA and a set of weight fac-

tors for a given threshold value is selected by using
QEA. QEA is based on the concept and principles

of quantum computing such as a quantum bit and

superposition of states. Instead of binary, numeric
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or symbolic representation, it uses a Q-bit as a

probabilistic representation. Its performance was

tested on the knapsack problem, which produced

outstanding results in computation time and suc-

cess rate (Han and Kim, 2002). The proposed ver-
ification system is compared with the previous

works to show the improvement in performance.

This paper is organized as follows. Section 2

presents PCA and density estimation. Section 3 de-

scribes QEA briefly. Section 4 presents how the

QEA is applied to optimize the distance measure

between face images and non-face images. Section

5 presents the experimental results and discussions.
Finally, conclusion follows in Section 6.
Fig. 1. DFFS and DIFS.
2. PCA and density estimation

In this section, we present PCA concept and

density estimation using Gaussian densities as a

basic technique of this study.

2.1. PCA concept

A technique commonly used for dimensionality

reduction is PCA. Sirovich and Kirby (1987) effi-

ciently represented human faces using PCA which

is currently a popular technique.

Given a set of m · n pixels images
{I1, I2, . . ., IK}, we can form a set of 1-D vec-

tors X = {x1,x2, . . .,xK}, where xi 2 RN¼mn; i ¼
1; 2; . . . ;K. The basis functions for the Karh-

unen–Loeve transform are obtained by solving

the following eigenvalue problem:

K ¼ UTRU ð1Þ
where R is the covariance matrix of X, U is the

eigenvector matrix of R, and K is the correspond-

ing diagonal matrix of eigenvalues. We can obtain

M largest eigenvalues of the covariance matrix and

their corresponding eigenvectors. Then feature

vector is given as follows:

y ¼ UT
M~x ð2Þ

where ~x ¼ x� �x is the difference between the im-

age vector and the mean image vector, and UM is
a submatrix of U containing the M largest eigen-

vectors. These principal components preserve the
major linear correlations in the given set of image

vectors. By projecting to UT
M , original image vector

x is transformed to feature vector y. It is a linear

transformation which reduces N dimensions to

M dimensions as follows:

y ¼ T ðxÞ : RN ! RM : ð3Þ
By selecting M largest eigenvectors, we can obtain
two subspaces. One is the principal subspace (or

feature space) F containing the principal compo-

nents, and the other is the orthogonal space F .
These two spaces are described in Fig. 1, where

DFFS stands for ‘‘distance-from-feature-space’’

and DIFS ‘‘distance-in-feature-space’’.

In a partial Karhunen–Loeve expansion, the

residual reconstruction error is defined as

�2ðxÞ ¼
XN

i¼Mþ1

y
2
i ¼ k~xk2 �

XM
i¼1

y
2
i ð4Þ

and this is the DFFS as stated before, which is

basically the Euclidean distance. The component

of x which lies in the feature space F is referred

to as the DIFS.

2.2. Density estimation

In the previous subsection, we obtained DFFS

and DIFS. DFFS is an Euclidean distance, but

DIFS is generally not a distance norm. However,

it can be interpreted in terms of the probability dis-

tribution of y in F. Moghaddam and Pentland

(1997) estimated DIFS as the high-dimensional
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Gaussian densities. This is the likelihood of an in-

put image vector x formulated as follows:

P ðxjXÞ ¼
exp½� 1

2
ðx� �xÞTR�1ðx� �xÞ�
ð2pÞN=2jRj1=2

ð5Þ

where X is a class of the image vector x. This like-
lihood is characterized by the following Mahalan-

obis distance

dðxÞ ¼ ðx� �xÞTR�1ðx� �xÞ ð6Þ
and it can be also calculated efficiently as follows:

dðxÞ ¼ ~xTR�1~x ¼ ~xT½UK�1UT�~x ¼ yTK�1y

¼
XN
i¼1

y2
i

ki
ð7Þ

where k is the eigenvalue of the covariance matrix.

Now, we can divide this distance into two sub-

spaces. It is determined as

dðxÞ ¼
XM
i¼1

y2
i

ki
þ

XN
i¼Mþ1

y2
i

ki
: ð8Þ

It should be noted that the first term can be com-
puted by projecting x onto the M-dimensional

principal subspace F. However, the second term

cannot be computed explicitly in practice because

of the high-dimensionality. So, we use the residual

reconstruction error to estimate the distance as

follows:

d̂ðxÞ ¼
XM
i¼1

y2
i

ki
þ 1

q

XN
i¼Mþ1

y
2
i ¼

XM
i¼1

y2
i

ki
þ �2ðxÞ

q
: ð9Þ

The optimal value of q can be determined by min-

imizing a cost function, but q ¼ 1
2
kMþ1 was used as

a thumb rule (Cootes et al., 1994).

Finally, we can extract the estimated probabil-

ity distribution using (Eqs. (5) and (9)). The esti-

mated form is determined by

P̂ ðxjXÞ ¼
exp � 1

2

XM

i¼1

y2
i

ki

� �

ð2pÞM=2QM
i¼1k

1=2
i

�
exp � �2ðxÞ

2q

� �

ð2pqÞðN�MÞ=2

¼ PF ðxjXÞ � P̂ F ðxjXÞ: ð10Þ

Using Eq. (10), we can distinguish the face class

from the non-face class by setting a threshold va-

lue for P̂ ðxjXÞ, which is the Maximum Likelihood

(ML) estimation method. In this case, the thres-
hold value becomes the decision factor between

the verification rate and false alarm rate. If the

threshold value is too low, the verification rate

would be quite good but the false alarm rate would

also increase. For this reason, the threshold value
has to be carefully selected. In the next section,

we introduce QEA as one of the evolutionary algo-

rithms to optimize the distance measure in Eq. (10)

for a given threshold value.
3. Quantum-inspired evolutionary algorithm (QEA)

QEA is designed with a novel Q-bit representa-

tion, a Q-gate as a variation operator, an observa-

tion process, a global migration process, and a

local migration process. It uses a new representa-

tion, called Q-bit, for the probabilistic representa-

tion that is based on the concept of qubits, and a

Q-bit individual as a string of Q-bits. A Q-bit is de-

fined as the smallest unit of information, which is
defined with a pair of numbers, (a,b), where

jaj2 + jbj2 = 1. jaj2 gives the probability that the

Q-bit will be found in the �0� state and jbj2 gives

the probability that the Q-bit will be found in

the �1� state. A Q-bit may be in the �1� state, in
the �0� state, or in a linear superposition of the

two. A Q-bit individual is defined as a string of

m Q-bits. QEA maintains a population of Q-bit
individuals, QðtÞ ¼ fqt1; qt2; . . . ; qtng at generation

t, where n is the size of population, and

qtj; j ¼ 1; 2; . . . ; n, is a Q-bit individual.

Fig. 2 shows the standard procedure of QEA.

The procedure of QEA is explained as follows:

(i) In the step of �initialize QðtÞ0; a0
i and b0

i ;
i ¼ 1; 2; . . . ;m, of all q0j , are initialized to 1ffiffi

2
p . It

means that one Q-bit individual, q0j represents
the linear superposition of all possible states with

the same probability.

(ii) This step generates binary solutions in P(0)

by observing the states of Q(0), where

P ð0Þ ¼ fx0
1; x

0
2; . . . ; x

0
ng at generation t = 0. One

binary solution, x0
j , is a binary string of length

m, which is formed by selecting either 0 or 1 for

each bit by using the probability, either ja0
i j
2
or

jb0
i j
2
of q0j , respectively.

(iii) Each binary solution x0
j is evaluated to give

a level of its fitness.



Procedure QEA
begin

t ← 0
i) initialize Q(t)
ii) make P (t) by observing the states of Q(t)
iii) evaluate P (t)
iv) store the best solutions among P (t) into B (t)

while (not termination condition) do
begin

t ← t + 1
v) make P (t) by observing the states of Q(t – 1)
vi) evaluate P (t)
vii) update Q(t) using Q-gates
viii) store th e best solutions among B (t – 1) and P (t) into B (t)
ix) store the best solution b among B (t)
x) if (global migration condition)

then migrate b to B (t) globally
xi) else if (local migration condition)

then migrate b t
j in B (t) t o B (t) locally

end
end

Fig. 2. Procedure of QEA.
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(iv) The initial best solutions are then selected

among the binary solutions, P(0), and stored into

B(0), where Bð0Þ ¼ fb01; b
0
2; . . . ; b

0
ng; and b0j is the

same as x0
j at the initial generation.

(v), (vi) In the while loop, binary solutions in
P(t) are formed by observing the states of

Q(t � 1) as in step (ii), and each binary solution

is evaluated for the fitness value. It should be

noted that xt
j in P(t) can be formed by multiple

observations of qt�1
j in Q(t � 1).

(vii) In this step, Q-bit individuals in Q(t) are

updated by applying Q-gates defined as a variation

operator. The following rotation gate is used as a
basic Q-gate:

UðDhiÞ ¼
cosðDhiÞ � sinðDhiÞ
sinðDhiÞ cosðDhiÞ

� �
; ð11Þ

where Dhi, i = 1,2, . . .,m, is a rotation angle of each

Q-bit. Dhi should be designed in compliance with

the application problem.

(viii), (ix) The best solutions among B(t � 1)

and P(t) are selected and stored into B(t), and if

the best solution stored in B(t) is a better solution

fitting than the stored best solution b, the stored

solution b is replaced by the new one.
(x), (xi) If a global migration condition is satis-

fied, the best solution b is migrated to B(t) glo-

bally. If a local migration condition is satisfied,

the best one among some of the solutions in B(t)

is migrated to them. The migration condition is a
design parameter, and the migration process can

induce a variation of the probabilities of a Q-bit

individual. A local-group is defined to be the sub-

population affected mutually by a local migration,

and a local-group size is the number of the individ-

uals in a local-group. Until the termination condi-

tion is satisfied, QEA is running in the while loop.
4. Optimization of distance measure

To improve the performance of the verification

rate and to reduce the false alarm rate, in this sec-

tion we present a novel evolutionary scheme to

search for the optimal distance measure for a given

threshold value.
The Mahalanobis distance-based probability

guarantees quite good performance, but it is not

optimal for discriminating face images from the

non-face images including the similar face images

(position-shifted or different-scale face images).
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In Eq. (10), an eigenvalue can be considered as the

weight factor of the corresponding feature value.

These weight factors can be optimized on a train-

ing data set. To perform the optimization, we con-

struct the training data set. It consists of two
classes: face class (positive training data) and

non-face class (negative training data). Fig. 3(a)

shows an example of a face training data set. It

was produced from the face region of the Martinez

and Benavente (1998). A non-face training data set

consists of arbitrarily chosen images and not exact

face images which are different in scale, translation

and rotation. Fig. 3(b) shows an example of a non-
face training data set.

To search for the optimal weight factors for a

given threshold value, QEA is used. The number

of weight factors to be optimized is M, which is

the same as the number of principal components.

Using the weight factors obtained by QEA, we

can compute the probability distribution as

follows:

P optðxjXÞ ¼
exp � 1

2

XM

i¼1

y2
i

xi

� �

ð2pÞM=2QM
i¼1k

1=2
i

�
exp � �2ðxÞ

2q

� �

ð2pqÞðN�MÞ=2 :

ð12Þ
Fig. 3. Examples of training data set: (a) face training data, (b)

non-face training data.
It is the same as Eq. (10) except for the weight fac-

tors xi, i = 1,2, . . .,M. If we apply Eq. (12) to face

verification with some weight factors, a threshold

value should be assigned. However, the threshold

value needs not to be tuned for better performance
since QEA yields optimized weight factors to the

predetermined threshold value.

To evaluate the fitness value, we calculate the

score. The score is added by +1 for every correct

verification. The score is used as a fitness measure

considering both the verification rate, P score for

the face class (positive training data) and the false

alarm rate, N score for the non-face class (negative
training data). Then the fitness is evaluated as

Fitness ¼ P scoreþ N score: ð13Þ
Using this fitness function, we can find the optimal

weight factors for training data set for the pre-

determined threshold value.

Our methodology for finding the weight factors
is shown in Fig. 4. It shows each generation of evo-

lution which maximizes the fitness value. After

reaching termination condition, we can obtain

the final weight factors xi, which maximize the fit-

ness value on the training data. By using the ob-

tained weight factors, we calculate Eq. (12) for

classification.
Feature extraction using PCA

Calculate the probability

Input images from
training database

Calculate the fitness

QEA
(maximize the fitness)

> T)|x( ΩoptP

iω

x

y

Fig. 4. Flowchart of the proposed method (T: Threshold

value).



1 2 40ω ω ω

10 Q-bits 10 Q-bits10 Q-bits
. . .

. . .

Fig. 6. Structure of a Q-bit individual.
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5. Experimental results and discussions

We constructed three types of database for the

experiment. First, 70 face images were used for

extracting principal components. Second, 1000
images (300 images for face and 700 images for

non-face) were used for training weight factors.

Third, 2168 images (1084 images for face and

1084 images for non-face) were used for the gener-

alization test. For this test, two kinds of database

were used. One is AR face database and the other

is RIT face database. RIT face database consists

of the images acquired in our laboratory (RIT
lab, KAIST) by capturing a video from USB cam-

era, which have relatively poor quality than AR

database. We intended to test the video camera

images which differ from still camera images. An

example of the RIT database is shown in Fig. 5.

All images are 40 · 40 pixels with 256 gray lev-

els. We chose 40 principal components from the 70

face images. For pre-processing, histogram equal-
ization was performed to normalize the lighting

condition.

Positive training data were produced from the

face region of the AR face database except occlu-

sion such as sunglasses. These are normalized by

specific position, scale and rotation. An example

of a face training data set is shown in Fig. 3(a).

Variations of the facial expression and illumina-
tion changes were allowed. Negative training data

consisted of both randomly generated images and

natural images excluding the face images. Position-

shifted face images, different-scale or different-

rotation face images were also included as negative

training data. An example of the negative training

data set is shown in Fig. 3(b).
Fig. 5. RIT face database.
As shown in Fig. 4, QEA was employed to train

the weight factors xi. The following boundary of

each weight factor was considered as a domain

constraint:

0:1ki < xi < 10ki; ð1 6 i 6 40Þ: ð14Þ
If xi = ki for all i, our method is equivalent to ML

classifier. A Q-bit individual is illustrated in Fig. 6.

Each weight factor was represented by 10 Q-bits.

We performed QEA to 1000 training images

using the parameters in Table 1. In Eq. (11), rota-

tion angles should be selected properly. For each
Q-bit, h1 = 0, h2 = 0, h3 = 0.01p, h4 = 0,

h5 = �0.01p, h6 = 0, h7 = 0, and h8 = 0 were used.

The termination condition was given by the

maximum generation. The perfect score was 1000

points, which is equivalent to the number of train-

ing images. If the score did not reach 1000 points

before the maximum generation, the evolution

process stopped at the maximum generation. After
the searching procedure, we obtained a set of

weight factors which maximized the fitness func-

tion. By using it, generalization test was per-

formed. We compared our algorithm with DFFS

classifier and ML classifier. All three classifiers ap-

plied PCA process for obtaining the feature vector

y. At next step, DFFS classifier was tested using

Eq. (4), and ML classifier was tested using Eq.
(10). Our algorithm was tested using Eq. (12) with
Table 1

Parameters for QEA

Parameters No.

Population size 15

No. of weight factors 40

No. of Q-bits per weight factor 10

No. of observations 2

Global migration period 100

Local migration period 1

No. of individuals per group 3

Max. generation 2000
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the weight factors obtained from QEA. For the

DFFS and the ML classifier, we selected the

threshold value that provoked the best fitness

score. For QEA-based classifier, we used the same

threshold value set for the ML classifier. It should
be noted that there was no need to choose a

threshold value for better performance in our clas-

sifier because the weight factors had been already

optimized for the predetermined threshold value.

Table 2 shows the results for the generalization

test. It shows that the proposed method performs

better than the DFFS or the ML classifier.

The results suggest that the QEA-based classi-
fier works well not only in terms of the verification

rate (P score), but also in terms of the false alarm

rate (N score). The verification rate of the QEA-

based classifier was higher than that of the ML

classifier. The false alarm rate was lower than that

of the ML classifier.

In summary, the advantage of our system can

be described in three aspects. First, it provides
the optimal distance measure to discriminate face

images from non-face images to given training

data set. It also has good generalization perform-

ance. Second, our system does not need an effort

to select the exact threshold value. We only need

to assign a threshold value, since QEA finds the

weight factors in the distance measure based on

the given threshold value. Third, our system can
be adapted to various negative data like other

training algorithms such as neural networks and

support vector machine. However, a fixed struc-

tured classifier such as the ML classifier can not

change its characteristic in frequent failure situa-

tions. Our system can be adapted by reconstruct-
Table 2

Results for generalization test

Face database Classifier Verification

rate (%)

False alarm

rate (%)

AR DFFS 94.39 7.40

ML 95.15 6.51

QEA-based 98.09 3.32

RIT DFFS 91.00 9.67

ML 93.00 8.67

QEA-based 96.33 6.33
ing the training data and following the

optimization procedure. Furthermore, by setting

the negative training data with position-shifted

or different-scale face images, our system can dis-

criminate exact frontal faces from non-exact-for-
mat faces. Therefore, our method is very helpful

to detect a normalized face. It is very important

to detect a normalized face which is generally used

for face recognition, since recognition results de-

pend on detection accuracy.
6. Conclusion

In this paper, we have proposed a novel evolu-

tionary scheme for optimizing the distance meas-

ure for face verification. The approach is

basically related to the eigenspace density estima-

tion technique. To improve the previous Mahalan-

obis distance-based classifier, we have used a novel

distance measure which consists of the weight fac-
tors optimized by the training set. The perform-

ance of the proposed face verification system has

been demonstrated through the improved face ver-

ification rate and false alarm rate.
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