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Abstract

This thesis proposes a novel evolutionary algorithm inspired by quantum comput-
ing, called a quantum-inspired evolutionary algorithm (QEA), which is based on
the concept and principles of quantum computing, such as a quantum bit and su-
perposition of states. Like other evolutionary algorithms, QEA is also characterized
by the representation of the individual, the evaluation function, and the population
dynamics. However, instead of binary, numeric, or symbolic representation, QEA
uses a Q-bit, defined as the smallest unit of information, for the probabilistic repre-
sentation and a Q-bit individual as a string of Q-bits. A Q-gate is introduced as a
variation operator that drives the individuals toward better solutions. The termina-
tion condition of QEA is designed by defining a new measure on the convergence of
Q-bit individuals. To analyze the characteristics of QEA, the theoretical analysis of
the QEA algorithm as well as the effects of changing parameters of QEA are exam-
ined. In particular, some issues of QEA such as the analysis of changing the initial
values of Q-bits, a novel variation operaféy gate, and a two-phase QEA (TPQEA)
scheme are addressed to improve the performance of QEA. To demonstrate the ef-
fectiveness and applicability of QEA, experiments are carried out on the knapsack
problem, which is a well-known combinatorial optimization problem. The results
show that QEA performs well, even with a small number of population, without pre-
mature convergence as compared to the conventional genetic algorithms. Moreover,
through the experiments on numerical optimization problems, the superior perfor-
mance of QEA is also verified. These results show that QEA can be applied to a

class of numerical as well as combinatorial optimization problems.
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1. Introduction

1.1 Background and motivation

Evolutionary algorithms (EAs) are principally a stochastic search and optimiza-
tion method based on the principles of natural biological evolution. Compared to
traditional optimization methods, such as calculus-based methods and enumerative
strategies, EAs are robust, global in operation, and may be applied generally without
recourse to domain-specific heuristics, although their performance may be affected
by these heuristics. The three main-stream methods of evolutionary computation
which have been established over the past 45 years are genetic algorithms (GAs) de-
veloped by Fraser [1], Bremermann [2] and Holland [3], evolutionary programming
(EP) developed by Fogel [4], and evolution strategies (ES) developed by Rechen-
berg [5] and Schwefel [6].

EAs operate on a population of potential solutions, applying the principle of
‘survival of the fittest’ to produce successively better approximations to a solution.
At each generation of the EA, a new set of approximations is created by the process
of selecting individuals according to their level of fitness in the problem domain and
reproducing them using variation operators. This process may lead to the evolution
of populations of individuals that are better suited to their environment than the
individuals from which they were created, just as in natural adaptation.

EAs are characterized by the representation of the individual, the evaluation
function representing the fitness level of the individuals, and the population dynam-
ics such as population size, variation operators, parent selection, reproduction and

inheritance, survival competition method, etc. To have a good balance between
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exploration and exploitation, these components should be designed properly. In
particular, in this thesis the representation and population dynamics are investigated
to represent the individuals effectively to explore the search space with a smaller
number of individuals (even with only one individual for real-time application) and

to exploit the search space for a global solution within a short span of time, respec-
tively. For these purposes, some concepts of quantum computing are adopted in the
proposed evolutionary algorithm.

Quantum computing is a research area which includes concepts like quantum
mechanical computers and quantum algorithms. Quantum mechanical computers
were proposed in the early 1980s [7, 8] and their description was formalized in the
late 1980s [9, 10]. Many efforts on quantum computers have progressed actively
since the early 1990s because these computers were shown to be more powerful than
digital computers for solving various specialized problems. There are well-known
quantum algorithms such as Deutsch-Jozsa algorithm [11], Simon’s algorithm [12],
Shor’s quantum factoring algorithm [13, 14], and Grover’s database search algo-
rithm [15, 16, 17]. Shor’s algorithm finds the prime factors ofadigit number in
polynomial-time, while the best-known classical factoring algorithms require time
0(2”% 1Og(")%) [18]. Grover’s algorithm can find an item in an unsorted listhof
items inO(y/n) steps, while any classical algorithm needs to access the list a mini-
mum of 0.5n times. If, for example, the speed of quantum or digital computér is
MIPS, Grover’s algorithm can find the secret key64bit string within4 minutes in
guantum computer without any factoring algorithms, while the classical algorithm
can find it within1, 000 years [19]. In particular, since the difficulty of the factor-
ing problem is crucial for the security of the RSA cryptosystem [20] which is in
widespread use today, interest in quantum computing is increasing [21].

Research on merging evolutionary computation and quantum computing has

started since the late 1990s. It can be classified into two groups. One group



concentrates on generating new quantum algorithms using automatic programming
techniques such as genetic programming [18, 22, 23]. The other concentrates on
guantum-inspired evolutionary computing for a digital computer, and is a branch
of study on evolutionary computation that is characterized by certain principles of
quantum mechanics such as uncertainty, superposition, interference, etc. [24, 25,
26, 27].

Unlike other research areas, there has been relatively little work done in apply-
ing quantum computing to evolutionary algorithms. Quantum-inspired computing
was introduced in [28]. In [24], a modified crossover operator which includes the
concept of interference was introduced. In [25], a probabilistic representation and a
novel population dynamics inspired by quantum computing were proposed. In [26],
the applicability of quantum-inspired evolutionary algorithm to a parallel scheme,
particularly, PC clustering, was verified successfully. In [27], the basic structure
of guantum-inspired evolutionary algorithm (QEA) and its characteristics were for-
mulated and analyzed, respectively. According to [27], the results (tested on the
knapsack problem) of QEA were proved to be better than those of CGA (conven-
tional genetic algorithm). In [29], a QEA-based disk allocation method (QDM) was
proposed. According to the results, the average query response times of QDM were
equal to or less than those of DAGA (disk allocation methods using GA), and the
convergence speed of QDM was 3.2-11.3 times faster than that of DAGA. In [30],
QEA was applied to a decision boundary optimization for face verification. The
proposed face verification system was tested by face and non-face images extracted
from AR face database [31]. Compared to the conventional PCA (principal com-
ponents analysis) method improved results were achieved both in terms of the face
verification rate and false alarm rate. Other research on quantum-inspired comput-
ing has also been investigated [32, 33].

With no connection to quantum computing, a number of evolutionary algorithms



that guide the exploration of the search space by building probabilistic models of
promising solutions found have been introduced since the late 1990s [34]. These
algorithms have shown to perform well on a variety of problems. In the population-
based incremental learning (PBIL) which is a method of combining the mechanisms
of a generational genetic algorithm with simple competitive learning [35], the solu-
tions are represented by binary strings and the population of solutions is replaced
with a probability vector. The compact genetic algorithm (cGA) [36] replaces the
population with a single probability vector as in PBIL, however its modification
method of the probability vector is different from PBIL. In the extended compact
genetic algorithm (ECGA) [37], the variables are divided into a number of intact
clusters which are manipulated as independent variables. The Bayesian optimiza-
tion algorithm (BOA) [38] uses a more general class of distributions than ECGA. It
incorporates methods for learning Bayesian networks and uses these to model the

promising solutions and generate the new ones.

1.2 Research objectives and outlines

This research aims at proposing a novel evolutionary algorithm, called a quantum-
inspired evolutionary algorithm (QEA), which is based on the concept and princi-
ples of quantum computing such as a quantum bit and superposition of states. Like
any other EAs, QEA is also characterized by the representation of the individual,
the evaluation function and the population dynamics. However, instead of binary,
numeric, or symbolic representation, QEA uses a Q-bit as a probabilistic representa-
tion, defined to be the smallest unit of information. A Q-bit individual is represented
by a string of Q-bits. The Q-bit individual has the advantage that it can represent
a linear superposition of states (binary solutions) in search space probabilistically.
Thus, the Q-bit representation is a better characterization of population diversity

than any other representations. A Q-gate is also defined as a variation operator of
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Figure 1.1: Quantum-inspired evolutionary algorithm (QEA).

QEA to drive the individuals toward better solutions and eventually toward a single
state. Initially, QEA can represent diverse individuals probabilistically because a
Q-bit individual represents the linear superposition of all the possible states with
the same probability. As the probability of each Q-bit approaches either 1 or 0 by
the Q-gate, the Q-bit individual converges to a single state and the diversity property
disappears gradually. By this inherent mechanism, QEA can treat the balance be-
tween exploration and exploitation. It should be noted that although QEA is based
on the concept of quantum computing, QEA is not a quantum algorithm, but a novel
evolutionary algorithm for a digital computer as shown in Figure 1.1 [27, 39]. To
demonstrate its performance, several experiments on a class of numerical and com-
binatorial optimization problems have been carried out. The results show that QEA
performs better, even with a small population, without premature convergence as
compared to the conventional evolutionary algorithms.

In Chapter 2, evolutionary computation is introduced briefly as a general outline.
Then the history and basics of quantum computation are described. Qubit, quantum
gate, superposition, and entanglement are regarded as the basics.

In Chapter 3, Q-bit and Q-bit individual are defined for the representation of



QEA. Then the basic structure of QEA is proposed and each step of QEA is de-
scribed from a theoretical viewpoint. The knapsack problem is considered to demon-
strate the applicability of QEA to a class of combinatorial optimization problems.
The concrete procedure QEA for the knapsack problem is described and the exper-
iments are carried out to demonstrate its performance in comparison to the conven-
tional genetic algorithms. The empirical and theoretical analyses of QEA follow to
investigate the characteristics of QEA. In particular, the termination criteria and the
effects of changing parameters are also investigated.

In Chapter 4, the basic structure of QEA is extended for the improvement in its
performance. The effects of changing the initial values of Q-bits are investigated,
since the initial values can influence the performance of QEA. A novel variation
operatorH, gate is proposed to provide an attempt to escape effectively from many
local optima. As an extended version of QEA, a two-phase QEA (TPQEA) scheme
is also proposed by analyzing the effect of changing the initial values of Q-bits. In
the first phase some promising initial values of Q-bits are searched, which will be
used in the second phase. By employing the second phase, the performance of QEA
can be increased for a class of optimization problems. To verify these issues, some
experiments have been carried out.

In Chapter 5, several numerical and combinatorial optimization problems are
picked up to demonstrate the effectiveness and applicability of QEA including the
issues of thed, gate and the TPQEA scheme.

Finally in Chapter 6, conclusions on this thesis are presented. Further research

scope is also discussed in detail.



2. Evolutionary Computation and Quantum

Computation

2.1 Evolutionary computation

More than 45 years ago, a number of innovative researchers at different places in
the US and Europe independently came up with the idea of mimicking mechanisms
of biological evolution in order to develop powerful algorithms for problems of
adaptation and optimization. Overviews of current state of the art in the field of
evolutionary computation are given by Fogel [40] aratB [41].

EAs are based on computational models of fundamental evolutionary processes
such as selection, recombination and mutation. Individuals, or current approxima-
tions, are encoded as strings composed over some alphabet(s), e.g. binary, integer,
real-valued, etc., and an initial population is produced by randomly sampling these
strings. Once a population is produced, it may be evaluated using an objective func-
tion which characterizes an individual’s performance in the problem domain. The
objective function is also used as the basis for selection, and determines how well
an individual performs in its environment. A fitness value is then derived from the
raw performance measure given by the objective function, and is used to bias the se-
lection process. Highly fit individuals will be assigned a higher probability of being
selected for reproduction than the individuals with a lower fitness value. Therefore,
the average performance of individuals can be expected to increase as the best fit
individuals are more likely to be selected for reproduction, and the less fit individ-

uals are discarded. Note that individuals may be selected more than once in any



Procedure EA
begin
t<—20
initialize P(t)
evaluateP(t)
while (not termination-conditionjlo
begin
t—t+1
selectP(t) from P(t — 1)
reproduce pairs it (t)
mutate P(t)
evaluateP(t)
end
end

Figure 2.1: General evolutionary algorithm.

generation (iteration) of the EA.

Selected individuals are then reproduced, usually in pairs, through the applica-
tion of genetic operators. These operators are applied to pairs of individuals with a
given probability and result in new offsprings that contain materials exchanged from
their parents. The offsprings are then further perturbed by mutation. These new in-
dividuals then make up the next generation. The processes of selection, reproduction
and evaluation are then repeated until some termination criteria are satisfied, e.g. a
certain number of generations completed, a mean deviation in the performance of
individuals in the population is below a certain value or when a particular point in
the search space is reached. The pseudo-code of a general evolutionary algorithm is
shown in Figure 2.1.

T. Back described notations and definition of EAs in his book [41] as follows:



An Evolutionary Algorithn(EA) is defined as an 8-tuple
EA: (I7®7Q7\II78?L7M7 )\) (21)

wherel = A, x A, is the space oihdividuals and A,., A; denote arbitrary sets.

® : [ — R denotes ditness functiorassigning real values to individuals.
Q={we,, - ,we.|we, : I* = I} U{we, : I" — I} (2.2)

is a set of probabilistigenetic operatowg,, each of which is controlled by specific

parameters summarized in the sBtsC R.
se, : (IMUTMH) — # (2.3)

denotes theelection operatgrwhich may change the number of individuals from
Aoru+ Atop, wherep, A € Nandu = X\ is permitted. An additional seb,

or parameters may be used by the selection operatas the number of parent
individuals, while\ denotes the number of offspring individuals. Finally,/* —
{T'rue, Flase} is atermination criterionfor the EA, and the generation transition
function¥ : [# — I* describes the complete process of transforming a population
into a subsequent one by applying genetic operators and selection.

The space of individuals may be arbitrarily complex, i.e. there are no restrictions
on the structure of the sets, andA;. Even the fitness functioh may include some
intermediate calculation steps, one of those always being evaluation of the objec-
tive function value which provides the basis of the fithess value. Whepeyen,
the operator sef includes a distinguished operatog : I* — I* which serves
to change population size formingoffspring individuals fromu parents. While
genetic operators are always probabilistic, selection may be probabilistic or com-

pletely deterministic. Both selection and genetic operators may be controlled by

9



Algorithm (Outline of an EA)
begin
t—0
P(t) « initialize(u)
O(t) — evaluate(P(t), )
while (.(P(t),©,) # true)do
begin
P'(t) « recombine(P(t), ©,)
P"(t) < mutate(P'(t), On)
O (t) «— evaluate(P"(t), \)
P(t+ 1) < select(P"(t), ®(t), u, Os)
t—t+1
end
end

Figure 2.2: Outline of an EA by T. &k.

some exogenous parameters. The termination criterioay range from arbitrar-

ily complicated criteria - e.g., genotypic or phenotypic diversity of the population,
relatively improvement of the best objective function value over subsequent genera-
tions - to rather simple ones, e.qg., testing whether a specified number of generations
is completed.

The description given above can be translated into a general algorithmic outline
of an EA.0,,, 6,, ©,, and©, denote the parameters of mutation, recombina-
tion, termination, and genetic operators, respectively,taehotes the generation
counter. P(t) and®(t) are the population and the fitness at generatjaespec-
tively, andu and )\ denote the parent population size and offspring population size,
respectively [42].

However, it should be noted that the notations of QEA proposed in this thesis
are different from those given above.

The three main-stream methods of evolutionary computation are genetic algo-

10



| | ES | EP | GAs |

Representation| Real-valued Real-valued Binary-valued
Fitness is Objective Scaled objective| Scaled objective
function value || function value || function value
Self- Standard None None
adaptation deviations and|| (standard EP)
rotation angles| variances
(meta-EP)
Mutation Gaussian, Gaussian, Bit-inversion,
main operator || only operator background operator
Recombination| Discrete and None Crossover,
intermediate, only sexual,
sexual and main operator
panmictic
Selection Deterministic || Probabilistic, Probabilistic
extinctive based on
preservation

Table 2.1: Main characteristics of EAsS.

rithms (GAs) developed by Fraser [1], Bremermann [2] and Holland [3], evolu-
tionary programming (EP) developed by Fogel [4], and evolution strategies (ES)
developed by Rechenberg [5] and Schwefel [6].

Genetic algorithms emphasize recombination (crossover) as the most important
search operator and apply mutation with very small probability solely as a back-
ground operator. They also use a probabilistic selection operator (proportional se-
lection) and often rely on a binary representation of individuals [43, 44, 45].

Evolution strategies use normally-distributed mutations to modify real-valued
vectors and emphasize mutation and recombination as essential operators for search-
ing in the search space and in the strategy parameter space at the same time. The
selection operator is deterministic, and parent and offspring population sizes usually
differ from each other [46].

Evolutionary programming emphasizes mutation and does not incorporate the

11



recombination of individuals. Similarly to evolution strategies, when approaching
real-valued optimization problems, evolutionary programming also works with nor-
mally distributed mutations and extends the evolutionary process to the strategy
parameters. The selection operator is probabilistic. Presently, most applications are
reported for search spaces involving real-valued vectors, although the algorithm was
originally developed to evolve finite-state machines [47].

The most important characteristics of EAs are summarized in Table 2.1 [48].

2.2 Quantum computation

Quantum computation is a research area that is based on the characteristics of
guantum mechanics such as uncertainty, superposition, interference, and entangle-
ment to process information through novel methods basically different from con-
ventional techniques. Quantum computation is referred to as quantum information
science, including quantum cryptography [49], quantum teleportation [50] as well
as quantum computing. Quantum computing deals with two main topics: quantum

computer and quantum algorithm.

2.2.1 History of quantum computation

The universal Turing machine (TM) is perhaps the most general computer possi-
ble, and all general purpose computers are approximations to it [51]. The universal
TM can simulate any TM with perfect precision, where a TM in turn is a theoretical
model that can simulate the execution of a single algorithm on a digital computer.
However, R. Landauer pointed out that erasure of information is necessarily a dissi-
pative process. His insight is that erasure always involves the compression of phase
space, and so is irreversible [52]. In 1973, C. H. Bennett found that classical com-
putation can be broken into a series of steps, each logically reversible, and this in

turn allows physical reversibility of the computation [53]. P. Benioff proposed quan-
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tum mechanical hamiltonian models of TMs which do not dissipate any energy and
operate at the quantum limit in that the system (energy uncertainty)/(computation
speed) is close to the limit given by the time-energy uncertainty principle [7, 54].
The models, however, are different from the concept of a current quantum computer.
R. Feynman showed how a quantum system could be used to perform computations
and could act as a simulator for probabilistically weighted quantum processes [8].

D. Deutsch showed that every finitely realizable physical system can be per-
fectly simulated by a universal quantum computer operating by finite means [9].
He also analyzed the role of quantum parallelism, and commented on the role of
quantum complexity theory. A theory of quantum computational networks which
is a generalization of the theory of quantum logic gates was also described by him
[10]. In a paper with R. Jozsa, he described an algorithm that illustrates the power
of quantum computation [11].

The real interest in exploring the bridge between physics and computation arose
when quantum algorithms which improved over their classical counterparts were
proposed [13, 12, 15]. In [13], P. Shor proposed a factoring algorithm for a quan-
tum computer that finds the prime factors of a composite integer more efficiently
than is possible with the known algorithms for a classical computer. Since the diffi-
culty of the factoring problem is crucial for the security of a public key encryption
system, interest in quantum computing is increasing. In [12], D. Simon presented
an expected polynomial-time algorithm for a quantum computer that distinguishes
between two reasonably natural classes of polynomial-time computable function.
In [15], L. K. Grover proposed an algorithm which achieves quadratic speedup for
the classic problem of database search. In the problem of a phone directory con-
taining V. names arranged in completely random order, for example, any classical
algorithm (whether deterministic or probabilistic) needs to access a database a min-

imum of 0.5N times to find someone’s phone number with a probability@f.
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] | Digital computer | Quantum computer |

Information Boolean (bit) Boolean (qubit)

Information \oltage of wire State of spin% system

implementation

Bit Added or removed Conserved

Reversibility Irreversible Conserved

Gate Spatially arranged Time-ordered
combination of transistorg unitary operators

Table 2.2: Differences between a digital computer and a quantum computer.

Using the Grover’s algorithm, however, the desired phone number can be obtained
in only O(v/N) accesses to the database, since quantum mechanical systems can be

in a superposition of states and simultaneously examine multiple names.

2.2.2 Basics of qguantum computation

The smallest unit of digital information is a bit, which takes one of the two
possible valueg0, 1}. The corresponding unit of quantum information stored in a
two-state quantum computer is called a quantum bit or qubit [55, 56]. A qubit may
be in the ‘1’ state, in the ‘0’ state, or in any superposition of the two. It describes
a state in the simplest possible quantum system. Table 2.2 shows the differences
between a digital computer and a quantum computer [57].

The state of a qubit can be represented as

[¥) = al0) + B[1), (2.4)

wherea and are complex numbers that specify the probability amplitudes of the
corresponding states [58]. A qubit is a state in a two-dimensional Hilbert space that
can take any value of the form (2.4%|? gives the probability that the qubit will be
found in the ‘0’ state and3|? gives the probability that the qubit will be found in

14



the ‘1’ state. Normalization of the state to unity guarantees
o + 18> = 1. (2.5)

If there is a system ahi-qubits, the system can represefitstates at the same time.
However, in the act of observing a quantum state, it collapses to a single state [59].

The state of a qubit can be changed by the operation with a quantum gate. A
guantum gate is a reversible gate and can be represented as a unitary operator,
acting on the qubit basis states satisfylif/ = UUT, whereU" is the Hermitian
adjoint of U. There are several quantum gates, such as NOT gate, Controlled NOT
gate, Hadamard gate, Square root of NOT gate, Phase gate, Controlled Phase Shift
gate, etc. [60]. A NOT gate is

Unor = ;

and its operation is shown as follows:

0) — 1)

) — 10).

In Controlled NOT (CNOT) gate, the NOT operation is only operative when the
state of the controlled qubit is ‘1’ state. The CNOT gate is

Ucnor(1,2) =

—
= o o O
o

o o O
o O

15



and its operation is shown as follows:

|00) — |00), |01) — |O1),

|10) — |11), |11) — |10).
A Hadamard gate is
UH = = ’

and its operation is shown as follows:

0)+ 1)
0) 7

0)— 1)
) it

Uy transforms a basis vector into superpositions. A Square Root of NOT gate is as
follows:

1| 1+2 1—2

U var = ,
vor 20 1—i 1+
UynorUynor = Unor.
A Phase gate and a Controlled Phase Shift (CPS) gate are

1 0

Ug = .
0 ¢

16



and

1 0 0 O
01 0 O
Ucps = ;
001 O
100 Oew_

respectively. Quantum gates are the basic units of quantum algorithms.

The power of quantum computation is characterized by the quantum parallelism
based on superposition and entanglement. If, for example, two qubits are not sepa-
rable, their state is entangled [60]. The difference between ‘unentangled’ and ‘en-

tangled’ states is shown in the following.

W) = 5100) + 201} + £110) + 7 J11) (2.6)
1 1 1 1
= (:7§|0>‘+ §7§|1>)(;7§|0>‘+':7§\1>)
= W}>Q1 ® W}>q2
— 00+ 11 2.7)
[Y)e = 7? >:E|> :

7 g ©[¥)g

While the stateéq)) s of (2.6) is superposed but not entangled, the state of (2.7)
is superposed and entangled. The entangled state cannot be expressed by a tensor
product of qubits.

2.3 Summary

In this chapter, evolutionary computation was introduced briefly as a general

outline. The history and basics of quantum computation were also described.

17



3. Quantum-inspired Evolutionary Algorithm

(QEA)

Inspired by the concept of quantum computing, QEA is designed with a novel
Q-bit representation, a Q-gate as a variation operator, and an observation process.
The representation, the proposed algorithm, and its characteristics are described in

the following.

3.1 Representation

A number of different representations can be used to encode the solutions onto
individuals in evolutionary computation. The representations can be classified broadly
as binary, numeric, and symbolic [61]. QEA uses a new representation, called a Q-
bit, for the probabilistic representation that is based on the concept of qubits, and a

Q-bit individual as a string of Q-bits, which are defined below.

Definition 3.1. A Q-bitis defined as the smallest unit of information in QEA, which

is defined with a pair of numbergy, ), as

)

where|a|? + |5]? = 1. |a|? gives the probability that the Q-bit will be found in the
‘0’ state and 3|? gives the probability that the Q-bit will be found in the ‘1’ state.
A Q-bit may be in the ‘1’ state, in the ‘0’ state, or in a linear superposition of

the two states.
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Definition 3.2. A Q-bit individualas a string ofm Q-bits is defined as

a]. az o oe e am (3 1)
b1 B2 Bm
where|o; > + B> = 1,i =1,2,--- ,m.

Q-bit representation has the advantage that it is able to represent a linear super-
position of states. If there is, for instance, a three-Q-bit system with three pairs of

amplitudes such as

1 1 1
V2 V2 2 (3.2)
1 -1 V3o
V2 V2 2
then the states of the system can be represented as

1 V3 1 V3

1|OOO> + T'OOD — Z\010> — T|011> (3.3)
V3 V3

1 3 1 3
+41100) + 7[101) — 2[110) — Z5[111),

The above result means that the probabilities to represent the Stades|001),

010), [011), [100), [101), |110), and|111) are &, 3, &=, &, &, 3 L and 3,
respectively. Consequently, the three-Q-bit system of (3.2) contains information of
eight states.

Evolutionary algorithm with Q-bit representation has a better characteristic of
population diversity than any other representations, since it can represent linear su-
perposition of states probabilistically. Only one Q-bit individual such as (3.2) is
enough to represent eight states, but in binary representation, at least eight strings,

(000), (001), (010), (011), (100), (101), (110) and(111), are needed.
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3.2 Basic structure of QEA

QEA is a probabilistic algorithm similar to other evolutionary algorithms. QEA,
however, maintains a population of Q-bit individualg(t) = {q!,q}, - ,q}} at
generatiort, wheren is the size of population, arnp;. is a Q-bit individual defined

as

t

ot

t Jl
q. pr—

J ﬁt,

71

ot ot
J2 Jm ] (3.4)

t t
Bja im

wherem is the number of Q-bits, i.e., the string length of the Q-bit individual, and
j=1,2,---,n.

Figure 3.1 and 3.2 show the procedure QEA and the overall structure of QEA
that can be explained in the following manner:

i) In the step of ‘initializeQ(t),” o and3,i = 1,2,--- ,m, of all q} = d;=o,

j=1,2,--- n,are initialized with—=. It means that one Q-bit individuai,? rep-

L
V2
resents the linear superposition of all the possible states with the same probability:

2m
1
Yq0) = D —==IXk), (3.5)
qj ;\/271 k

where X}, is the kth state represented by the binary stripgzs - - - z,,,), where
x4 = 1,2,--- ,m, is either0 or 1 according to the probability of eithén?|? or

187

influenced by the initial value. The effect of the initial value is discussed in Section

2 respectively. However, it should be noted that the performance of QEA can be

4.1.

i) This step makes binary solutions i(0) by observing the states 6}(0),
where P(0) = {x{,x9,---,x2} at generationt = 0. One binary solution?,
j=1,2--- n,is abinary string of length, which is formed by selecting either

0 or 1 for each bit using the probability, eithes?|? or |39]2,i = 1,2, ,m, of
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Procedure QEA
begin
t—20
i) initialize Q(t)
ii) make P(t) by observing the states @f(t)
iii) evaluateP(t)

iv) store the best solutions amoiyt) into B(t)
V) while (not termination conditionylo
begin
t—t+1
vi) make P(t) by observing the states ¢f(t — 1)
vii) evaluateP(t)
viii) update@(t) using Q-gates
iX) store the best solutions amofgf¢t — 1) and P(t) into B(t)
X) store the best solution amongB (t)
Xi) if (global migration condition)
then migrateb to B(t) globally
Xii) else if(local migration condition)
then migrateb’, in B(t) to B(t) locally
end
end

Figure 3.1: Procedure QEA.
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Figure 3.2: Overall structure of QEA.

q?, respectively. In a quantum computer, in the act of observing a quantum state, it
collapses to a single state. However, collapsing into a single state does not occur in
QEA, since QEA is working on a digital computer, not a quantum computer.

iii) Each binary solutionsc? is evaluated to give a measure of its fitness.

iv) The initial best solutions are then selected among the binary solutiths
and stored intaB(0), where B(0) = {b{, b}, -- by}, andb! (b§|t:0) is the
same as;? at the initial generation.

v) Until the termination condition is satisfied, QEA is running in tigle loop.

In particular, termination criteria are described in Section 3.7.

vi, vii) In the while loop, binary solutions irP(¢) are formed by observing the
states of) (¢t — 1) as in step ii), and each binary solution is evaluated for the fithess
value. It should be noted thag- in P(t) can be formed by multiple observations of
qul in Q(t—1). In this casex’; should be replaced by, , wherel is an observation
index.

viii) In this step, Q-bit individuals inQ(¢) are updated by applying Q-gates

defined below.
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Definition 3.3. A Q-gateis defined as a variation operator of QEA, by which opera-
tion the updated Q-bit should satisfy the normalization conditiet? + |3|? = 1,

wherea’ and3’ are the values of the updated Q-bit.

The following rotation gate is used as a basic Q-gate in QEA, such as

cos(Af;) —sin(Ab;)
U(Ab;) = (3.6)
sin(Af;)  cos(A6;)
whereA#d;,i = 1,2,--- ,m, is a rotation angle of each Q-bit toward eitl@eor 1

state depending on its sigr\d; should be designed in compliance with the appli-
cation problemA#; can be obtained as a function of the bit of the best solution

b}, theith bit of the binary solutiorx!, and some meaningful conditions. It should

be noted that NOT gate, controlled NOT gate, or Hadamard gate can be used as a
Q-gate. NOT gate changes the probability of the 1 (or 0) state to that of the 0 (or 1)
state. It can be used to escape a local optimum. In Controlled NOT gate, one of the
two bits should be a control bit. If the control bitis 1, the NOT operation is applied
to the other bit. It can be used for the problems which have a large dependency of
two bits. Hadamard gate is suitable for the algorithms which use the phase informa-
tion of Q-bit as well as the amplitude information. And it should be noted hat

gate which is a novel Q-gate as a variation operator is designed in Section 4.2.

iX, X) The best solutions among(¢ — 1) and P(t¢) are selected and stored into
B(t), and if the best solution stored iB(¢) is better fitted than the stored best
solutionb, the stored solutiob is replaced by the new one.

xi, xii) If the global migration condition is satisfied, the best solutlwis mi-
grated toB(¢) globally. If the local migration condition is satisfied, the best one
in a local group inB(t) is migrated to others in the same local group. The mi-
gration process defined below can induce a variation of the probabilities of a Q-bit

individual.
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Definition 3.4. A migrationin QEA is defined as the process of copyh;@in B(t)
or b to B(t). A global migrationis implemented by replacing all the solutions in
B(t) by b, and alocal migrationis implemented by replacing all the solutions in

the same local group by the best one of them.

Definition 3.5. A local groupin QEA is defined as the subpopulation affected mu-

tually by a local migration, and its size is the number of individuals in the local

group.

3.3 Application example: The knapsack problem

In this section, the detailed algorithm of QEA for the knapsack problem is pre-
sented. The knapsack problem (see Appendix A.1) is considered to demonstrate
the applicability of QEA to a class of combinatorial optimization problems. For

comparison purpose, three types of GA methods are described briefly.

3.3.1 QEA for the knapsack problem

QEA for the knapsack problem consists of a basic structure of QEA and a ran-
dom repair process to satisfy the capacity constraint. Figure 3.3 shows the algorithm
for the knapsack problem.

A Q-bit individual of lengthm represents a linear superposition of solutions to the
problem. The length of the Q-bit individual is the same as the number of items.
The initialization step is the same as that of the basic structure of QEA in Section
3.2. Theith item can be selected for the knapsack with a probability3gf or

(1 — |a;]?). For every bit in the binary stringé-, j =12, ,n,in P(t), a
random number is generated from the rande..1]; if » < |3;]?, the bit of the
binary string is set td. Thus, a binary string of length is formed from the Q-bit

individual, which represents a solution observed fromjtiheQ-bit individual. For

24



Procedure QEA for the knapsack problem

begin

end

t—20

initialize Q(t)

make P(t) by observing the states Gf(¢)
repair P(t)

evaluateP(t)

store the best solutions amo{t) into B(t)
while (t < MAXGEN) do

begin

t—t+1

make P(t) by observing the states 6f(t — 1)
repair P(t)

evaluateP(t)

update Q(t)

store the best solutions amofft — 1) and P(t) into B(t)
store the best solution amongB (t)

if (global migration condition)

then migrateb to B(t) globally

else if(local migration condition)

then migrateb’, in B(t) to B(t) locally

notational simplicityx andq are used instead cdg andqﬁ., respectively. To obtain

the binary stringx, the step of inake P(t) by observing the states 6j(¢)” can

be implemented for each Q-bit individual as shown in Figure 3.4. When the binary

string violates the capacity constraint, the random repair method shown in Figure

3.5 is employed, although the greedy repair method guarantees the better solutions.
The update procedure of Q-bits is presented in Figure 3.6. A rotation gate

U(A¥;) is employed to update a Q-bit individualas a variation operatofa;, 3;)

Figure 3.3: Procedure QEA for the knapsack problem.
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Procedure make (x)
begin
1—0
while (i < m) do
begin
1—i+1
if random[0,1) < |3;|?
thenx; — 1
elsex; < 0
end
end

Figure 3.4: Procedure make.

Procedure repair (x)

begin
knapsack-overfilled— false
if > wiz; > C
then knapsack-overfilled— true
while (knapsack-overfilledjlo
begin
select anth item from the knapsack
then knapsack-overfilled— false
end
while (not knapsack-overfilledjlo
begin
select gjith item from the knapsack
:L‘j — 1
if 2111 w;x; > C
then knapsack-overfilled— true
end
z; 0
end

Figure 3.5: Procedure repair.
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Procedure update (q)

begin
71— 0
while (i < m) do
begin
1—i+1
determineA#; with the lookup table
obtain(«/, 8!) from the following:
if (q is located in the first/third quadrant)
then [o} 37]" = U(A6;) [ 5]
else[a, 5;]T = U(=A8) [0 5;])"
end
q—d
end

Figure 3.6: Procedure update.
of theith Q-bit is updated as follows:

o o
Y= . (3.7)
{ B ] { Bi ]

Figure 3.7 depicts the polar plot of the rotation gate for Q-bit individuals. In

cos(A6;) —sin(A6;)
sin(Af;)  cos(A6;)

this knapsack problem, the angle parameters used for the rotation gate are shown in
Table 3.1. Let us define an angle veo®e= [0 05 - - - 05]7, wheredy, 0, -- -, g
can be selected easily by intuitive reasoning. For exampieg,ahdb; are0 andl1,

respectively, and if the conditiofi(x) < f(b) is true, then:

i) if the Q-bit is located in the first or the third quadrant in Figure 837,the

value of Ag; is set to a positive value to increase the probability of the state

11);

ii) if the Q-bit is located in the second or the fourth quadrastty should be
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Figure 3.7: Polar plot of the rotation gate for Q-bit individuals.

used to increase the probability of the stdte
If z; andb; arel ando, respectively, and if the conditiofix) < f(b) is true, then:

i) if the Q-bit is located in the first or the third quadrafi,is set to a negative

value to increase the probability of the stéig

i) if the Q-bit is located in the second or the fourth quadrartt; should be
used to increase the probability of the stigte

If it is ambiguous to select a positive or a negative number for the values of the
angle parameters, itis recommended to set the valuediahe knapsack problem,

03 = 0.017, #5 = —0.017, andO for the rest were used. The magnitudeX#; has

an effect on the speed of convergence, butif it is too big, the solutions may diverge or
converge prematurely to a local optimum. The values ranging frooi to 0.17

are recommended for the magnitude’df;, although they depend on the problems.
The sign of Af; determines the direction of convergence. The verification of the

angle selection is presented in Section 3.4.
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010 true 04
010 false 0o
0|1 true 03
01 false 04
110 true 05
110 false Os
1|1 true 0
111 false s

Table 3.1: Lookup table ol\§;, wheref(-) is the profit, and; andz; are theith
bits of the best solutiob and the binary solutiow, respectively. In the knapsack
problem,91 =0, 92 =0, 93 = 0.01m, 94 =0, 95 = —0.01m, 06 =0, 07 =0,
fs = 0 were used.

3.3.2 GA methods for the knapsack problem

There are several GA methods for the knapsack problem [61, 62, 63, 64, 65,
66, 67]. In this section, three types of GA methods are described and tested for the
knapsack problem: GAs based on penalty functions, GAs based on repair methods,
and GAs based on decoders [68].

In these GAs based on penalty functions, a binary string of the lengtpre-
sents a chromosometo the problem. The profif (x) of each string is determined

as

f(x) = ZPifEi — Pen(x),
i=1

where Pen(x) is a penalty function. There are several possible strategies for as-
signing the penalty function [69, 70]. Two types of penalties are considered, such

as logarithmic penalty and linear penalty:

Peni(x) = log, (1 +p (Z wiT; — C’))

=1

Peny(x) = p (Z WiT; — C’) ,
i=1
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wherep is max;—1...,, {pi /w; }.

In GAs based on repair methods, the prgfik) of each string is determined as
f(X) - Zpix;7
=1

wherex’ is a repaired vector of the original vecter Original chromosomes are
replaced with &% probability in the experiment. The two repair algorithms con-
sidered here differ only in selection procedure, which chooses an item for removal
from the knapsack:

Rep, (random repair): the selection procedure selects a random element from
the knapsack,

Rep- (greedy repair): all items in the knapsack are sorted in the decreasing
order of their profit to weight ratios, and the selection procedure always chooses the
last item for deletion.

A possible decoder for the knapsack problem is based on an integer representa-
tion. Each chromosome is a vectorafintegers; theéth component of the vector is
an integer in the range fromto (m — i + 1). The ordinal representation references
a list L of items; a vector is decoded by selecting appropriate item from the current
list.

Dec (random decoding): the build procedure creates dlist items such that
the order of items on the list corresponds to the order of items in the input file which

is random.

3.3.3 Experimental results

In all experiments, strongly correlated sets of data were considered:

w; = uniformly random|1,10],

pi = w;+5.
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The average knapsack capacity (see Appendix A.1) was used for the knapsack con-
straint. Three knapsack problems with 100, 250, and 500 items were considered,
and the data were unsorted.

The population sizes of QEAL1, QEA2, and QEA3 were set to 1, 10, and 10,
respectively. The global migration period in generation of QEA2 was 1 and that
of QEA3 was 100. In QEAZ2, only global migration was used, and in QEA3, both
global and local migrations were used. The local migration was implemented be-
tween each pair of neighboring solutionsfit{t) every generation, and the local
group size was 2. Figure 3.8 shows the results of QEAL, QEA2, and QEA3 on the
knapsack problems with 100, 250 and 500 items for finding good parameter settings
of 83 and6; of the lookup table. The values 6f0025x, 0.0057, 0.017, 0.027, and
0.057 were tested fof; and—605. All the best profits were averaged over 30 runs,
and the maximum number of generations was 1,000. It should be noted that the
results of the cases with the same valugpfind —0; were better than the oth-
ers. From the results, the valuesofilm and—0.017 were selected fofl3 andés,
respectively.

The population sizes of conventional GAs (CGAs) were 1 and 10. To discover
good parameter settings of CGAs, the values of 0.001, 0.01, 0.05, and 0.1 for mu-
tation and of 0.01, 0.05, 0.1, 0.3, 0.5, and 0.7 for two-point crossover were tried on
six CGAs: Penl, Pen2, Repl, Rep2, Pen2 + Repl, andPen2 + Rep2 (Dec was
not included in these experiments for finding parameters, since it took a long time to
evolve and had worse performance as compared to other CEA8R + Repl and
Pen2 + Rep2 were designed by using a linear penalty function and random repair
algorithm, and a linear penalty function and greedy repair algorithm, respectively.
That is, 288 experiments per problem were tried (24 parameter setiBgSGAs
x 2 population sizes). Figure 3.9 shows the results of six CGAs on the knapsack

problems with 100, 250 and 500 items to find good parameter settings. All the best
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CGAs QEAs

Rep2 | Rep2 | QEAL | QEA2 | QEA3

1) (10) 1) (10) | (10)

b. | 592.4 | 607.7 | 597.7 | 612.7 | 612.7

m. | 576.4 | 599.2 | 591.8 | 606.3 | 609.5
100 | w. || 557.2 | 587.6 | 582.5 | 597.7 | 607.6
o || 7975 | 4.673 | 4.840 | 3.308 | 2.404

te || 0.015 | 0.127 | 0.021 | 0.199 | 0.203

b. | 1444.9| 1479.8| 1480.2| 1515.2| 1525.2

m. || 1415.1| 1462.5|| 1464.5| 1508.1| 1518.7
250 | w. || 1394.2| 1440.2| 1445.1| 1495.2| 1515.2
o || 12.480| 8.788 | 9.554 | 5.427 | 2.910

te || 0.035 | 0.308 || 0.055 | 0.531 | 0.558

b. || 2820.0| 2895.4| 2899.7 | 3004.6| 3025.8

m. || 2772.9| 2864.5|| 2876.4| 2980.8| 3008.0

500 | w. || 2712.3| 2841.1| 2836.2| 2966.3| 2996.1
o || 21.453| 15.257|| 12.832| 9.411 | 8.039

te || 0.068 | 0.615 || 0.117 | 1.212 | 1.258

Table 3.2: Experimental results of the knapsack problem. The number of items
100, 250 and 500, the maximum number of generations 1,000, the number of runs
30. The parenthesized values are the population siZeg2 means the algorithm
implemented by the greedy repair method, &ndn., andw. meanbest, mean,
andworst, respectivelys andt.(sec/run) represent the standard deviation and the
elapsed time per run, respectively.

profits were averaged over 30 runs, and the maximum number of generations was
1,000. From Figure 3.9, we could selé6t05,0.1) for the population size 1 and
(0.01,0.7) for the population size 10 as ordered pairs of mutation and crossover
probabilities that gave the maximum profit.

As a performance measure of the algorithms, we collected the best solution
found within 1,000 generations over 30 runs, and we checked the elapsed time per
run, which are summarized in Table 3.2, where oRbp2 among CGAs is shown
because it outperformed all other CGAs. As Table 3.2 shows, QEASs yielded much
better results compared fep2, except in the results dkep2 (10) andQ E' A1 with
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100 items, which, however, is a relatively simple one compared to the other cases
(250 and 500 items). The results show that QEAs perform well even with a small
population. In the cases of 250 and 500 ite@#&; A1 found better solutions within

a short span of time as compared to CGAs'.

Figure 3.10 shows the progress of the mean of best profits and the mean of av-
erage profits of population found by QEA2, QEA3 and CGA (Rep2) over 30 runs
for 100, 250 and 500 items. QEAs performed a lot better than CGA in terms of
convergence rate and profit amount. QEAs showed a faster convergence rate than
CGA. QEAS’ final profits were much larger than CGA's in 1,000 generations. The
tendency of convergence is shown clearly in the results of the mean of average
profits for the population. In the beginning, the convergence rates of all the al-
gorithms increased. However, the convergence rate of CGA decreased gradually
due to its premature convergence. As shown in Figure 3.10 (d) and (f), QEAs
displayed no premature convergence in average profits throughout the 1,000 gen-
erations. In particular, the results on QEA2 and QEA3 should be mentioned that
initially, QEA3 showed a slower convergence rate than QEA2. However, QEA3
outperformed QEAZ2 in profits after about 500 generations, since QEA3, with a
global migration process every 100 generations and a local migration process in

every generation, can increase the population diversity.
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Figure 3.8: Best profits of QEAs on the knapsack problems with 100, 250 and 500
items to find good parameter settingsfgfandéd; of Table 3.1. The vertical axis

is the best profit averaged over 30 runs, and the horizontal axis is the parameter
settings of ordered pairs 6§ and—0s. 41, 92, 03, 44, andds are0.00257, 0.0057,

0.017, 0.027, and0.057, respectively.
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Figure 3.10: Comparison of QEAs and CGA on the knapsack problem. The CGA is
Rep2 and its population size is 10. The vertical axis is the profit value of knapsack,
and the horizontal axis is the number of generations. The best profits and the average
profits were averaged over 30 runs.
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3.4 \Verification of the angle selection

In this section, the selection of the angle parameters for the rotation gate is ver-
ified. In Section 3.3, it was suggested to set a positive numbetsfaa negative
number forfs, and0 for the rest of the angle parametersanof Table 3.1 for the
knapsack problem. To verify this intuitive reasoning, an experiment of QEAL on
the knapsack problem with 100 items was tried. The maximum number of genera-
tions was 1,000. The values 0f 0.0057, and—0.0057 were used for each of the
eight angle parameters. That #, cases o were tried. Figure 3.11 shows the
experimental results carried out step by step to find proper signs, —) of the
angle parameters: (8} cases 0P, (b) 37 cases o whend; was selected a8,

(c) 3% cases 0B when both of; andd, were selected & (d) 3° cases ob when
both of§; andd, were0, andds was selected as a positive numke605, (e) 3*
cases ofd when both off; andf, were0, 85 was0.0057, andf, was selected as
0, and (f)3® cases oP® when both of9; andf, were0, 85 was0.0057, 6, wasO,
andf; was selected as a negative numbe,0057. The results o, 64, 8¢, and
0s, that is, the cases in which(x) < f(b) is false are worthwhile to be mentioned
that the values of,, 6,4, 8¢, andfds had little effect on the results as shown in Fig-
ures 3.11(b), (d), and (f), respectively. It means thatd,, s, anddg can be set
to any one among, 0.0057, and —0.005x. In the results on the cases in which
f(x) < f(b) is true, the values di, 0.0057, —0.0057, and0 for 6, 65, 05, and
0, respectively, made better solutions. From these experimental reQuitsyld
be assigned g8 * p * n * 0|7, wherex is one of (), p, andn), p is a positive
number, anch is a negative number. This is consistent with the intuitive reasoning
given in Section 3.3.

Three numerical problems are considered to show that the resuls @an
be applied to other optimization problems. To deal with numerical problems, real

values of the variables should be encoded as binary strings since QEA uses a Q-bit
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representation to generate a binary bit. The three numerical problems are as follows:
Problem 1: Maximize f; (x) = 100—(100(z2? —z2)?+(1—x1)?), where—2.048 <

x; < 2.048. The global maximum value iH)0 at (x1,z2) = (1,1). This function

is a modified version of De Jong function (1) (see Appendix A.2).

Problem 2: Maximize fo(x) = — >7_, integer(z;), where—5.12 < z; < 5.12.

The global maximum value i80 for all —5.12 < z; < —5.0. This function is a
modified version of De Jong function (2).

Problem 3: Maximize f3(x) = 100.98 — %+2§21;;1(r1,m2)

Cj + Z?:l(xi — aij)ﬁ, where—65.536 < z; <65.536, K =500, cj = j, and

, Whereg;(z1,z2) =

=32 =16 0 6 32 -32 -16 --- 0 16 32
-32 -32 -32 -32 -32 -16 —-16 --- 32 32 32

lai;] =

The global maximum value i$00 at (z1,22) = (—32,—32). This function is a
modified version of De Jong function (3).

Each variable was encoded as a 25-bit string. The population sizé. s
maximum number of generations wa$00. The values of), 0.0057, and—0.0057
were used for each of the eight angle parameters. Figures 3.12, 3.13 and 3.14 show
the results of Problems, 2, and3, respectively, carried out step by step to find
proper signg0, +, —) of the angle parameters. The resultséand,, 65, and6s,
that is, the cases which(x) < f(b) is false, are worthwhile to be mentioned that
the values ob,, 04, 65, andfg had little effect on the results as shown in (b), (d),
and (f) of Figures 3.12, 3.13 and 3.14. These are the same results of the knapsack
problem as shown in Figure 3.11. The se®bfor finding the maximum value of
each problem was obtained from the results as follows:

fr:0xp*x0xn]T, [0xpx 00T, [0xpxn*0]T,[pxpx*nx*0xT,

andp * p x n x nx|T;

for 0xpxn*x0xT,[0xpsxnxn*]T,[0xnxn*x0T,[0%n*nx*nxT,
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01 |02 | O3 | 04| O5 | 06| 07 | 0Og
0]062| % | 008 = | 013 x | 0.53
0.3 | = | 0.75 | % 0 * 0
n|008 | x | 017 | x | 0.87 | * | 0.47

3

Table 3.3: Average frequencies @fp, andn for eachd; in © from Problems 1, 2,
and 3. The values are scaled betwéemd1.

x; | by | AG; | rec.

00| 64 0
Fx) < fb)| 0| 1] 65 |
true 1 10| 65 n
11| 67 0

Table 3.4: Simplified lookup table dfd;, whereb; andz; are theith bits of the best
solutionb and the binary solutiox, respectively.rec. means the recommended
value of Ad;. p is a positive number, andis a negative number.

0x0xn+0]T,[0x0xnxn*|T, [nxn*nx+0xT, andn +n*n*nT;
f3: [0xpxn*x 0], [0xpxnsxn]T, prxpxn*0+]T,andp *p*n*nx|T.

Table 3.3 shows the average frequencie$,qf, andn for eachd; in © from the
above results. From the tabl, = p * n * 0|7 has a higher frequency and is
included in each set @& for Problems 1, 2, and 3. It means titatan be assigned
as[0 = p * n * 0x]” for other problems.

From the empirical results, Table 3.1 for the rotation gate can be simplified as
Table 3.4. It should be noted thét and #; can be assigned a nonzero value in

compliance with the application problems.

39



Profit

600
590)
580)
570)
560)
550|

‘ .91‘:0.00577‘ ‘ q:—o.ooén ‘.92:‘0 — 8, =0.0057 ‘ ‘52:‘—0.005‘77
(a)@:[********]T (b)@:[O*******]T

W

Profit
g g K 8 g g
Profit

6,20 ‘93=o.oo’531 I y— =0 80007 8, = 00057
(€©)O© =00 % * * * % %7 (O =1[00p * * % %7
: B ﬁ
6,0
a0 ot ‘95=—o.‘oosz1 ‘ %0 =007 g =000
(€)O =[00p0 * * x +|7 HO=[00p0n * T

Figure 3.11: Best profits of QEA1 on the knapsack problem with 100 items to find
proper signs of the angle parameters of Table 3.1. The vertical axis is the best profit
averaged over 30 runs, and the horizontal axis is the parameter settings of the angle
values.x could be set t®, 0.0057, and—0.0057. p andn were set td.0057 and

—0.005m, respectively. 40
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Figure 3.12: Results of Problem 1 to find proper signs of the angle parameters of
Table 3.1. The vertical axis is the function value fofx) averaged over 30 runs,
and the horizontal axis is the parameter settings of the angle valwesild be set

to 0, 0.0057, and—0.0057. p andn were set td.0057 and—0.0057, respectively.
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Figure 3.13: Results of Problem 2 to find proper signs of the angle parameters of
Table 3.1. The vertical axis is the function value fofx) averaged over 30 runs,
and the horizontal axis is the parameter settings of the angle valwesild be set

to 0, 0.0057, and—0.0057. p andn were set td.0057 and—0.0057, respectively.
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Figure 3.14: Results of Problem 3 to find proper signs of the angle parameters of
Table 3.1. The vertical axis is the function valuefgfx) averaged over 30 runs,
and the horizontal axis is the parameter settings of the angle valwesild be set

to 0, 0.0057, and—0.0057. p andn were set t@.0057 and—0.0057, respectively.
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3.5 Investigation of the characteristics

In this section, the characteristic of the proposed QEA is investigated. A simple
knapsack problem with only ten items was considered to investigate the character-
istics of QEA. Strongly correlated sets of data and the average knapsack capacity
were used as in Section 3.3. While selecting a subset from ten items, there exist
210 cases. By a simple calculation, we could obtain the profit values of 1024 cases
in the knapsack problem as shown in Figure 3.15. In this problem, the best profit
satisfying the capacity constraint was 62.192938 at the 127th. The solutions with
larger profit than the 127th one violated the capacity constraint. Now, to investigate
the characteristics of QEA, a single Q-bit individual (QEA1) was used. A rotation
gate and the parameter settings were the same as those of the experiments in Section
3.3. Figure 3.16 shows the probabilities of 1024 solutions using the Q-bit individual
at generations, 10, 20, 30, 40, 50, 100, 200, and 300. Since all the possible solutions
of the Q-bit individual are initialized with the same probability as described in (3.5),
we have a probability of 0.001?(%02 = 2%0) for each solution which is shown in
Figure 3.16 (a), (b), and (c) as a horizontal line. It means that QEA initially starts
with a random search.

With regard to the result at generation 10, it is worthwhile to mention that the
probabilities of 1024 solutions had a pattern similar to the profit distribution of
Figure 3.15. It means that the only one Q-bit individual was able to represent 1024
cases similarly. At generation 20, solutions with larger probability appeared. At
generation 30 to 50, the probabilities of the solutions with larger profit increased
on a large scale. At generation 100, however, all the peak values decreased except
the peaks of the better solutions. The same feature was obtained at generation 200.
At generation 300, the probability of the best solution was over 0.9, and those of
the other solutions were around 0. It means that the Q-bit individual had almost

converged to the best solution.
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Figure 3.15: Profit values of 1024 cases in the knapsack problem with ten items ob-
tained by a simple calculation. The vertical axis is the profit values of the knapsack,
and the horizontal axis is the number of 1024 cases selected as a subset from ten
items. The best profit satisfying the capacity constraint is marked with O.

The results above can be summarized in the following. Initially, QEA starts
with a random search. At generation 10, the distribution of the probabilities of
all the solutions becomes similar to the profit distribution in Figure 3.15. As the
probabilities of the solutions with larger profit increase, QEA starts a local search.
Finally, the probability of the best solution convergeslto It means that QEA
starts with a global search and changes automatically into a local search because
of its inherent probabilistic mechanism, which leads to a good balance between

exploration and exploitation.
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Figure 3.16: Probabilities of all solutions using a Q-bit individual. The vertical axis
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of 1024 cases selected as a subset from ten items.
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3.6 \Verification of the QEA algorithm

There have been some works done based on the theoretical analysis of EAs for
certain simple functions [71, 72, 73, 74, 75, 76]. However, the theories behind these
analyses cannot be applied to the analysis of QEA, since the structure of the QEA
algorithm is quite different from any other EAs. In this section, the reason why and
how QEA works is investigated by using a simple function with two viewpoints like

its exploitation and exploration.

3.6.1 Exploitation

A theoretical model for the whole process of the QEA algorithm is hard to find,
since each state of QEA is dependent on the past history. However, if a simplified
model for a segment of the QEA process (as shown in Figure 3.17) is considered,

the abstract model can be regarded as a Markov chain.

Figure 3.17: Simplified process model for a segment of the QEA process.

The simplified model of the segment process of QEA represents the process
which is defined during the state holding perigdetween the,th generation when
the current best solution is visited and #hth (or (¢ + t)th) generation when the
current best solution jumps to another better solution. In Figure 31% the state
which indicates the state when the current best solution is maintained; éthe
state which indicates the state when the current best solution is changed to another

better solution.eq is the event that states that the observed solution is worse than
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the current best solution, anrgl is the event that states that the observed solution is

better than the current best solution. Amgl 7, j = 0, 1, is the transition probability

from statei to statej. It should be noted that; andp;; are not needed, since the

process corresponding to this model is terminated if the state is changedjftom

s1. The whole process of QEA can be regarded as a sequence of segment processes.
The segment process of QEA (SPQEA) is described by using Markov process

[77] as follows:

SPQEA = (E,S,T',p,po) (3.8)
E ={ep,e1}, S={s0,51},

L(s0) = {eo, €1}, T(s1) ={}

p(80; 50, €0) = Poo, P(81;50,€1) = Po1,

pO(SO) = ]-a pO(Sl) = 07

whereE is a event set§ a state spacd,(s) a set of feasible events defined for
all s € Swith T'(s) C E, p(s';s,¢') a state transition probability defined for all
s,s' € S, ¢ € E, and such thap(s; s,e’) = 0 for all ¢ ¢ T'(s), andpy(s) the
probability mass functio®[Sy = s], s € S, of the initial stateS.

Let us consider th©ONEMAX problem as follows:

ONEM AX problem: Maximize
ONEMAX (x) = ) ", (3.9)
=1

wherez; is theith bit of x, m is the length ofx, and the global maximum value is

matx =111---1.
Let us suppose that all the rotation angles of the rotation gate in QEA are zeros.

Then the QEA process is the same as the process of random search. In this case,
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each solution in the search space has the same probability and its probability is
invariant all the time. It means that this process can be modelled by using only
one SPQEA wittpoy = 252 andpy1 = 5. The expected running number of

generations for this model is described in the following.

Theorem 3.1. The expected running number of generatignsf the random search

is

log 2
f = —— 8% 3.10
" log(1 — po1) (3.10)

wherepy; is the transition probability from state, to states;.

Proof. LetV (s) be the number of generations spent at statden it is visited.

P[V(so) =1] = pn

P[V(so) =2] = poopor = (1 —po1)po1
PV (so) =3] = pgopor = (1 — po1)*po1
P[V(so) =t] = p661])01 = (1-po1)" 'por

To give the expected running number of generatignshe summation of the prob-

ability P[V (sg) = k] fromk = 1to k = t;, should bej.

th 1
SoPV(so)=1] = 1-(-p)* = 5
t=1

b = log 2

o log(1 — por)”

Theorem 3.2. The expected running number of generatignsf the random search
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for the ONEM AX problem for lengthm is

log 2
ty=———"2——. (3.12)
log(1 — 2%)

Proof. Each solution in the search space for the random search has the same prob-
ability 2%,, and its probability is invariant all the time. Leg be the state when the

current best solution is one of all the possible solutions except the global maximum.

Then the transition probabilitiggy, andpo; are 2% and 5, respectively. By
Theorem 3.1,

P log 2 B log 2

" log(1 — po1) log(1 — 317)

However, if the rotation angles are not zeros, the QEA process should be con-
sidered as a sequence of SPQEA models. Also, one SPQEA model should not
be considered as a homogeneous Markov chain, since the transition probability
pi; is dependent on generation Let us consider only one segment of the QEA
process, SPQEA. The transition probability at the generdtisnsupposed to be
po1(t) = &(t)po1(t — 1), where(t) is the increasing rate of the transition probabil-
ity po1(t),0 < po1(t) < 1,£(1) =1, andl < £(t) < pm#(t) fort > 1, the expected

running number of generations of SPQEA can be stated as follows.

Theorem 3.3. The expected running number of generatignef SPQEA with time-

varying transition probability can be approximated as

—1
log (1 - g + 25071(00
log(§ — €po1(0))

~

th (3.12)

wherepg; (0) is the initial transition probability from state, to states; and¢ is a
constant satisfyind~;" | po1 (k) = 34", €5 1po1(0).
Proof. Letpp;(t) be the transition probability fromy, to s; and£(t) the increasing
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rate of the transition probability at the generatipwhereé(t) = ppo(lt( )1) fort > 1

and¢(1) = 1. The probabilities for the state holding periodsgfare

P[V(s0) =1 = poi(1) = £1)po1(0) = por(0)

P[V(so) =2] = (1—po1(1))po(2) = (1—po1(0)) £(2)po1(0)
P[V(so) =3] = (1-poi(0))(1 = &(2)po1(0)) £(3)€(2)po1(0)
P[V(so) =4] = (1 —po1(0))(L —&(2)po1(0))(1 —&(3)€(2)por(0)) x

§(4)§(3)€(2)po1(0)

Let £(t) be a constang satisfying>";_, po1(k) = S5._; € po1(0), the above

can be rewritten as

P[V(so) =1] = poi(0)

P[V(so) =2] = (1—p01(0)) &por(0)

PV(s0)=3] = (1=po1(0))(1 —E&poi(0)) &por(0)

PlV(so)=4] = (1=p01(0))(1 — &po1(0))(1 —&°po1(0)) €>po1 (0)
T

P[V(so) =1t] = kl:[ﬂ(l — & p01(0)) €01 (0).

Since¢ can be considered a(sl + )) where0 < 0 < po1(0), P[V (so) = 1]

can be approximated as

P[V(so) =t] ~ (1—p0o1(0))"~" & " poi(0).

To give the expected running number of generatignshe summation of the prob-

ability P[V (sg) = k] from k = 1 to k = ¢, should be}. Therefore, the expected
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Figure 3.18: Comparison of the expected running number of generatjgnsith
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1.2) and random searcly & 1.0). ¢ is the increasing rate of (3.12). A logarithmic
(base 10) scale is used for the horizontal and vertical axes.

running number of generations of SPQEA is obtained as

1—(1—po)tn& 1

p01(0) = =

1 —(1—po1)é 2

& -1
log (1 —3T pm(O))

log(&§ — €po1(0))

It should be noted that § is 1, ¢, of (3.12) remains same as that of (3.10) for

random search. Figure 3.18 shows the expected running number of genetgtions

with respect to the initial transition probabilipg; (0). In the case of random search

(& = 1.0), if po1(0) is small,ty, is very large, .9t |y, (0)=1.0x10-13 = 6.9 x 10"

at¢ = 1.0. However, for the cases of QEA (= 1.01 and1.2), the expected

running number of generations is much smaller than that of random search, e.g.

th‘p01(0):1.0><10713 - 2,475 atf - 101 and151 atf - 12

Let us consider th©ONEMAX problem for lengthm, wherem = 4. If the

initial statesy has the current best solution 100, the transition probability is
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t= t=2 t=3
xo | por() €MD) | x1 [ pon(2) | €2 x2 | poi(3) | €(3)
0000 | 0.4590/| 1.1923
0001 | 0.4168| 1.0828
0000 | 0.3849| 1.2318|| 0010| 0.4168| 1.0828
0100 | 0.4209| 1.0935
1000| 0.4209| 1.0935
0000 | 0.4168| 1.2052
0001 | 0.3761| 1.0876
0001 | 0.3458| 1.1067| 0010| 0.3743| 1.0824
0100/ 0.3801| 1.0991
1000| 0.3801| 1.0991
0000 | 0.4168| 1.2052
0001 | 0.3743| 1.0824
1100| 0.3125| 1.0 | 0010 0.3458| 1.1067| 0010| 0.3761| 1.0876
0100 0.3801| 1.0991
1000| 0.3801| 1.0991
0000 | 0.4209| 1.2109
0001 | 0.3801| 1.0934
0100| 0.3476| 1.1124|| 0010 0.3801| 1.0934
0100| 0.3815| 1.0974
1000| 0.3849| 1.1073
0000 | 0.4209| 1.2109
0001 | 0.3801| 1.0934
1000| 0.3476| 1.1124| 0010| 0.3801| 1.0934
0100| 0.3849| 1.1073
1000| 0.3815| 1.0974

Table 3.5: Simulation results for the verification of the increasinggaea simple
calculation for theONEM AX problem for lengthn, wherem = 4. t is the time step
(or generation)x; the observed solution &t po; (¢) the transition probability from
so to s1, and{(t) the increasing rat%%. po1(t) was obtained by the sum of
P[X; = 1111], P[X,; = 1110], P[X; = 1101], P[X,; = 1011], andP[X; = 0111].
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po1(0) = 5% = 0.3125, since all the solutions have the same probabiify at

t = 0 and there are five solutions, suchas 1111, 1110, 1101, 1011, and 0111, better
than1100. Table 3.5 shows the simulation results of all the possible situations from
t = 1tot = 3 to verify the value of the increasing ragét). The rotation angle
of p (or |n|) for the rotation gate was set €003 in this simple calculation. This
table shows that the values&ift) are greater than 1 in all the possible situations. It
means that the probability at which the better solution is to be found increases each
generation and the better solution can be found in a shorter span of time as shown
in (3.12).

Figure 3.19 shows the experimental results of QEA for@mEMAX problem
for lengthm, wherem = 16. In Figure 3.19 (a), the dotted line gives a reference
for finding a prope& which can provide an upper bound of the expected running
number of generations for each segment process. If the segment processes of QEA
are modelled by SPQEA, the expected running numbers of generations of (3.12)
with values of¢ = 1.09, 1.1, and 1.09 can provide the upper bound for those of the
2nd, 3rd, and 4th segment processes of QEA, respectively.

It should be noted that the increasing rate) of the transition probability was
greater than 1 in the results of Table 3.5 and Figure 3.19. Also, the statement that
&(t) is always greater than 1 for tl@NEM AX problem for lengthn can be verified

by a simple calculation.

Theorem 3.4. The expected number of Q-bits toward the state 1 foQReMAx

problem is a positive value in SPQEA.

Proof. Letm be the binary string length and the number of ones for the current
best solution. If the number of ones for the observed binary solutién vehere

k < n1, the number of Q-bits toward the state 1nis — k) and the number of binary
solutions which havé ones |sk,(+lk), Since the number of all the possible binary

solutions in SPQEA ii;”;ol k,(%k), the expected number of Q-bits toward the
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Figure 3.19: Experimental results of QEA1 for tBelEMAX problem for length

m, wherem = 16. The dotted line gives a reference for finding a praperhich

can provide an upper bound of the expected running number of generations for each
segment process. A logarithmic (base 10) scale is used for the vertical axis of (a).
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state 1 for theODNEMAX problem for lengthn is a positive value:

o (e — )
n1—1 m!
k=0 Fl(m—F)!

> 0. (3.13)

In other words, QEA for th©NEMAX problem has the tendency of converging
to better solutions in a short span of time. The reason can be explained by the
concept of building block which is a small, tightly clustered group of genes [78]. In
the case of th®©NEMAX problem, the group of ones for the current best solution
can be regarded as a building block and the probability of this building block is
increased by the rotation gate. As a consequence, the probabilities of the better
solutions increase.

It is worthwhile to mention that a sequence of SPQEA for@neMAX prob-
lem guarantees the global solution in terms of expected running number of genera-
tions, since the number of better solutions always decreases after one sequence of

SPQEA and it eventually becomes 1 to be considered as the only global solution.

3.6.2 Exploration

To increase the performance of EAs for various optimization problems, explo-
ration as well as exploitation discussed earlier should be considered. The global
optimum for a unimodal function which has no local optimum can be exploited
without exploration. However, if an EA has no scheme for exploration, the global
optimum for a multimodal function which has many local optima is not guaranteed
to be found out.

To verify the strategy of exploration for QEA, Shannon entropy [79] can be

considered as a measure of the amount of information included in a Q-bit individual.
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The entropy ob(x), x € X, is described as

I(p(x)) = —p(x)logy p(x),

whereX is a search spacé(-) the entropy (or information) of the probability, and
p(x) the probability o, i.e. P[X = x]. The entropy of the probability distribution

for the search space represented by a Q-bit individual is driven to be

I(p(x)|x € X) Zp x) log, p(x (3.14)
xeX
where
p(x) = Hpi
i=1
with

) el if =0
- { B2, if zi=1
wherez; is theith bit of x and(«;, ;) is theith Q-bit. It should be noted that the
entropy initially has the maximum value of and it decreases gradually, since each
probability of p(x), x € X, is shifted with a small amount by the rotation gate as
generation advances.
For comparison purpose, let us considér+ 1) GA with mutation rate%,

wherem is the length of binary solution. Crossover operator cannot be used, since

the population size is 1.

Definition 3.6. A Hamming distanced of the two binary stringsx; andxs, is
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defined as the number of their bitwise-different bits, which is defined as
H(x1,%2) = Z |z1; — 224
=1

wherem is the binary string length.

Theorem 3.5. The entropy of the probability distribution for the search space rep-

resented byl + 1) GA is a constant regardless of the generatidor ¢ > 0.

Proof. Letx be the current binary solutios] the next binary solution, antl the
Hamming distance betweenandx’. If x’ with Hamming distancé from x is x”,

the probability ofx” can be described as

m—1 m—~h 1 h
- (27 ()
m m
and the number of all the possibt& is

m)!

"6 = R —

The entropy of the probability distribution for the search space is obtained as
I(px)xeX) = = p(x)logsp(x)

= =) (e o ph)) . (3.15)

h=0

Therefore, the entropy of the probability distribution for the search space repre-
sented by1+ 1) GA is a constant regardless of the generatias shown in (3.15).
Let us also consider a simulated annealing (SA) method which is a specific

version for binary representation (see Appendix B.1).
Theorem 3.6. The entropy of the probability distribution for the search space rep-
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Figure 3.20: Comparison of the entropy of the probability distribution for the search
space with respect to the time step (or generation) among QEA#R,1) GA, SA,
and the random search. The results were obtained fror@tEM Ax problem for

lengthm, wherem = 16.

resented by SA with binary representation is a constant regardless of the tinte step

fort > 0.

Proof. Letx be the current binary solutior, the next solution, antd the Hamming
distance betwees andx’. Then the distancé is always1 for SA with binary
representation. If the length of binary stringris the number of all the possibie

is m and the probability ok is L. Sincep(x") is 0 for all 2 excludingh = 1, the

entropy of the probability distribution for the search space is obtained as

Ip(x)x €X) = = p(x)logyp(x)
xeX

1
= —logy —. (3.16)
m

Therefore, the entropy of the probability distribution for the search space repre-

sented by SA with binary representation is a constant regardless of the time step
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as shown in (3.16).

Figure 3.20 shows the differences of the entropy of the probability distribution
for the search space among QEAL+ 1) GA, SA, and the random search. While
the entropy values fofl + 1) GA, SA, and the random search are constant values
of (3.15), (3.16), andn, respectively, that of QEAL is not a constant. The entropy
value of QEAL is initially the same as that of the random search, and it decreases
gradually as generation advances. This result shows clearly that the strategy of
QEA for exploration differs from those @dfl + 1) GA and SA. Itis hard to say that
which strategy is the superior one compared to others, since the performance of the
strategy may depend on the specific problems. However, it is clear that QEA starts
with a global search scheme and changes automatically into a local search scheme
as generation advances because of its inherent probabilistic mechanism, that leads
to a good balance between exploration and exploitation as already mentioned in

Section 3.5.

3.7 Termination criteria

To decide the appropriate termination of QEA, a proper termination condition
is necessary. Although the maximum number of generations is a generally used
termination criterion in evolutionary algorithms, in QEA the probability of the best
solution can be employed as a termination criterion because of the probability rep-
resentation. The termination condition can be designed by using the average proba-

bility of the best solutiorb as follows:

Prob(b) = :LG: (m pjl-) (3.17)
1

j=1 \i=
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[ % JJ0001] 001 ] 01 | 08 | 09

best | 3031.2| 3036.2| 3031.3| 3031.3| 3036.3
mean || 3008.0| 3014.3| 3019.0| 3018.0| 3020.3
500 | worst | 2980.7| 2991.1| 3006.3| 3006.3| 3001.3
o 12.571| 9.798 | 6.548 | 6.993 | 7.895
t 905 1045 | 1240 | 1896 | 3071

Table 3.6: Experimental results of the knapsack problem with 500 items to show the
effects of changingy for the termination condition (3.18). The population size was
12, the global migration period 100, the local group size 3, and the number of runs
30. o andt represent the standard deviation and the average number of generations,
respectively.

with

‘Otji‘Q, lf bl = O

pji = 5 .
‘ﬁﬂ’ y lf bZ =1

whereb; is theith bit of the best solutiob and («;, 55;) theith Q-bit of the jth

Q-bit individual. The termination condition hence is defined as
Prob(b) > o, (3.18)

where0 < vy < 1. The probabilityProb(b) represents the average convergence
of all the Q-bit individuals to the best solution. It must be a substantial termina-
tion criterion of QEA. However, since the probability is sensitive to each Q-bit’s
probability, it is not easy to set the valug. The slight difference ofyy can in-
crease the processing time for a particular problem. Table 3.6 shows the effects of
changing the valugy. From the table, ifyp > 0.1, all the results were almost the
same. However, the generation numbefyat= 0.9 was about 2.5 times of that at

Yo = 0.1.

To design a new termination criterion regardless of the sensitivity, a measure of
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| i [ 0.9 | 095 [ 0.99

best | 2979.5| 3016.2| 3031.3
mean || 2949.5| 2993.9| 3020.1
500 | worst | 2905.9| 2960.7| 3001.3
o 20.372| 14.295| 7.681
t 484 722 1164

Table 3.7: Results on changindor the termination criterion (3.19). The parameter
settings were the same as in Table 3.&ndt represent the standard deviation and
the average number of generations, respectively.

the convergence of Q-bit individual is defined.

Definition 3.7. Q-bit convergencé€, is defined to be the convergence measure of a

Q-bit individual in QEA as

1 m
Cola) = — D[ 2l
=1

or

Cyla) = S [1-25P,

=1

whereq is a Q-bit individual, anda;, ;) is itsith Q-bit.

Using the Q-bit convergence, the following termination criterion can be de-

signed:

1 n
Czw = E z:l Cb(qj) >, (319)
]:

whereCy(q;) is the Q-bit convergence of thgh Q-bit individual. The termination
criterion of (3.19) is shown to be regardless of the best soldiiofiowever, the
average convergence of all the Q-bit individuals can represent the processing status
of QEA properly, and it gives a clearer meaning on how much each Q-bit converges

to 0 or 1 on an average. Consequently, users can more systematically set the ter-
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Figure 3.21: Difference between the two measures of (3.18) and (3.19) for termina-
tion criteria. A logarithmic (base 10) scale is used for the vertical axis of (a).
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mination condition. For example, @, is 0.99, it means thab9% of the Q-bits
converge to the true value (0 or 1) on an average. Table 3.7 shows the results on
changing the value.

Figures 3.21 (a) and (b) show the difference between the two measures of (3.18)
and (3.19) for termination criteria. In Figure 3.21 (b), it should be noted that the
Q-bit convergence provides an easier understanding of the Q-bit individuals’ con-
vergence.

It is worthwhile to mention that if a faster termination is needed, the following

maximum Q-bit convergenag,,... can be used:

Crnaz = <H1%1X Cb(qj)> >7. (3.20)
j=

3.8 Effects of different parametric settings

In this section, the effects of changing parameters (such as the population size,
the global and local migration periods, the rotation angles, and the number of ob-

servations) of QEA are investigated.

3.8.1 Population size

To investigate the effects of changing the population size of QEA, the knapsack
problem with 500 items considered in Section 3.3 was used. The population size
was tested from 1 to 100. The rotation gate was used for Q-gate. The values of
0.017, —0.017, and0 were used fols, 65, and the rest 0D, respectively. The
global migration period in generation was 100, and the local migration period was

1. The local group size, was set as

ng = max (integer (g) ,1) , (3.21)
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wheren is the population size. For the comparison purpose, the conventional GA
(CGA) which outperformed all other CGAs in Section 3.3 was tested. The values
of 0.001 and 0.7 for the mutation and crossover probabilities, respectively, were
selected for CGA Rep2). The maximum number of generations was 1,000.

Figure 3.22 shows the results on the effects of changing the population sizes
of QEA and CGA. In Figure 3.22 (a) and (b), the profits increased fast until the
population size was 10-20, however the increasing rate was nearly constant after
the population size reached 30. The tendency of the results on QEA was similar
to that of CGA. However, it should be noted that the best and average profits of
QEA with population size 2 were better than those of CGA with population size
100 (according to (d), the convergence speed of QEA with population size 2 was
29 times faster than that of CGA with population size 100). In Figure 3.22 (c),
it is also worthwhile to mention that the standard deviation of the best profits of
QEA over 30 runs decreased as population size increased. It means that the larger
population size could provide better robustness for QEA. However, this relation
between population size and robustness did not appear in the result of CGA after
the population size reached 20. The processing time of QEA was about 2 times of
the CGA's for the same population size. This is because QEA uses Q-bit individuals
as a population. Q-bit individuals need floating point calculations to represent the
corresponding probabilities. However, it should be noted that the processing time

of QEA was proportional to the population sizewhich is the same as CGAs.

3.8.2 Global and local migrations

The performance of QEA with a few individuals was already verified in the
previous results. It means that QEA can be easily extended to a parallel scheme
as proposed in the structure of QEA. Since the parallel scheme can increase the

population diversity, it helps QEA to explore the search space effectively.
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Figure 3.22: Effects of changing the population sizes of QEA and CGA for the
knapsack problem with 500 items. The global migration period and the local mi-
gration period were 100 and 1, respectively. The local group size was set as (3.21).
The results were averaged over 30 runs.
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Figure 3.23: Effects of changing the global migration period in QEAs with and
without local migration for the knapsack problem with 500 items. The global mi-
gration periodl;;,,,; Was set to the values ranging from 1 to 300. For the QEA with
local migration, the period was 1 and the local group size was set as (3.21). The
profits were averaged over 30 runs.
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Figure 3.24: Relations between migration and Q-bit convergence for the knapsack
problem with 500 items. The population size was 30. The global migration periods
of (b), (c), and (d) were 1, 40, and 120, respectively. The local group sizes of (b),
(c), and (d) were 1, 1, and 6, respectively.
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To show the effects of changing the global migration period, the same knapsack
problem with 500 items was considered. The population sizes of 10, 30, and 50
were tested. The maximum number of generations was 1,000. To investigate the
effects of using the local migration, QEAs with local migration and without local
migration were considered for each population size. Figure 3.23 shows the effects
of changing the global migration period in QEAs with and without local migration.
The local group size of QEA with local migration was set to be the same as (3.21).
In the results of QEA without local migration, an undershooting point at near 40
was found, since the increasing diversity from the global migration disturbed the
convergence of homogeneous individuals. In the results of QEA with local migra-
tion, the undershooting point disappeared. This is because the local migration with
period 1 guaranteed the convergence of homogeneous individuals in the same local
group. From these results, we can say that it is desirable that the local migration
period be set to 1 to guarantee the convergence of homogeneous individuals. It is
also worthwhile to mention that the best results were found at the global migration
period between 100 and 150, although the migration period could be affected by
other parameters. Consequently, the global migration period should be set properly
considering the convergence period of the local groups.

Figure 3.24 shows the relations between migration and Q-bit convergence. While
the profits of the point A (Figure 3.24 (b)) increased continuously without pertur-
bation, those of the point B (Figure 3.24 (c)) and the point C (Figure 3.24 (d))
increased with perturbation. The perturbation was caused by the global migration.
The difference of the perturbation level between the points B and C can be explained
by using the concept of Hamming distance. When a new best solution comes from

the neighbor local group through the global migration:

i) if the new best solution has a large Hamming distance from the current best

solution, the Q-bit individual varies largely to adapt the new one;
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i) if the new best solution has a small Hamming distance from the current best
solution, the Q-bit individual changes alittle. In this case, the Q-bit individual

has a chance to have a premature convergence to a local optimum.

3.8.3 Rotation angles

In the previous empirical results, the best results on the knapsack problem with
500 items were found at the global migration period between 100 and 150. And
the rotation angle op (or |n|) was set td).017. However, if the rotation angle is
changed, the global migration period for inducing the best result may be changed.
If the value of rotation angle is smaller, the global migration period must be larger,
since the convergence speed is changed to be slower.

Here, to investigate the effects of changing the rotation angles, the knapsack
problems with 500, 600, and 700 items were considered. The population size and
the local group size were set to 30 and 6, respectively. The local migration period
was set to 1. The termination condition of (3.19) was used instelthofGEN and
the value ofy was set td).99.

Figure 3.25 (a) shows the effects of changing the value of rotation angle ranging
from 0.0057 to 0.057. As shown in this figure, it should be noted that there was a
peak value of the mean best profits for the same rotation apglénd the value
of global migration period for the peak was larger as the value of rotation angle
was smaller. Figure 3.25 (b) shows the relation between the rotation angle and
the global migration period for each peak. And it shows that the rotation angle is
inversely proportional to the global migration period. The result was approximately

the same as

+ 10. (3.22)

Also, the running number of generations where the algorithm is terminated by the
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termination condition fory = 0.99 was approximately the same as

9.0
to.99 = T;— + 80. (3.23)

Figures 3.26 and 3.27 show the similar results in the relations among the rotation
angle, the global migration period, and the running number of generations to those
of Figures 3.25.

Consequently, the relation between the rotation angle and the global migration
can be approximated as

- %

=29 4k, (3.24)
g

where), > 0 andk, > 0. The relation between the rotation angle and the running
number of generations can be also approximated as

A
ty ="

=2 4k, (3.25)
)

where)\, > 0 andk,, > 0.

It is worthwhile to mention that, of (3.24) andk,, of (3.25) are nonzero values,
since each Q-bit is not updated when the current best solution is changed to the
current observed solution in the update procedure. As the result of the knapsack
problem with 500 items for checking how many times the current best solution
changes during the running number of generations, the best sotutias changed
about 80 times and the best solutibn for each individual was changed about 10
times, where the rotation angle and the global migration period were 8dilto

and 100, respectively.
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Figure 3.25: Effects of changing the rotation angles for the knapsack problem with
500 items. The global migration period was set to the values ranging from 1 to 300.
The population size and the local group size were set to 30 and 6, respectively. The
termination condition of (3.19) was used and the value e@fas set td).99. All

the results were averaged over 30 rufisis the rotation angle gf (or |n|), T, the

global migration period, an¢, g9 the number of generations where the algorithm

is terminated by the termination condition for= 0.99. The dotted line of (b) is

T, = % + 10 and that of (c) igg.99 = % + 80.
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Figure 3.26: Effects of changing the rotation angles for the knapsack problem with
600 items. The global migration period was set to the values ranging from 1 to 300.
The population size and the local group size were set to 30 and 6, respectively. The
termination condition of (3.19) was used and the value efas set t.99. All

the results were averaged over 30 rufisis the rotation angle af (or |n|), T, the

global migration period, an¢, 99 the number of generations where the algorithm

is terminated by the termination condition for= 0.99. The dotted line of (b) is

T, = % + 10 and that of (c) igg.99 = % + 80.
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Figure 3.27: Effects of changing the rotation angles for the knapsack problem with
700 items. The global migration period was set to the values ranging from 1 to 300.
The population size and the local group size were set to 30 and 6, respectively. The
termination condition of (3.19) was used and the value efas set t.99. All

the results were averaged over 30 rufisis the rotation angle af (or |n|), T, the

global migration period, an¢, 99 the number of generations where the algorithm

is terminated by the termination condition for= 0.99. The dotted line of (b) is

T, = 1'§’:“ + 10 and that of (c) igg.99 = % + 80.

75



Profit
\
I
4
b
1
4
(
!
N
Pl

FEZEZ

BOwe

=)

1 % 10 1% 20 P a0
Tgl oba

Figure 3.28: Relations between the multiple observations and the global migration
period for the knapsack problem with 500 items. The global migration period was
set to the values ranging from 1 to 300. The numbers of observatigneere 1,

3, 5, and 10, respectively. The profits were averaged over 30 runs.

3.8.4 Multiple observations

In QEA, the observation process of a Q-bit individual provides a binary string.
Since the Q-bit individual includes many binary strings, instead of the Q-bit indi-
vidual, the binary string from it is evaluated to give its fitness level. To represent the
Q-bit individual, several binary strings can be obtained by multiple observations. In
this case, we can guess that multiple observations are related to the convergence of
QEA.

To investigate the relations between the number of observations and the perfor-
mance of QEA, the knapsack problem with 500 items was considered. The popula-
tion size, the global migration period, and the local group size were set to 10, 100,
and 2, respectively.

Figure 3.28 shows the relations between the multiple observations and the global
migration period. The global migration period was set to the values ranging from 1
to 300. The numbers of observations were 1, 3, 5, and 10. From this result, it should

be noted that the multiple observations increased the performance and decreased the
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sensitivity of the global migration period although the profits were almost the same
at N, = 3, 5, and 10. However, there is no doubt that the multiple observations
increase the processing time. If the complexity of the problem is not high, it is

recommended to set the value to 1.

3.9 Summary

In this chapter, a novel QEA, inspired by the concept of quantum computing,
was proposed. A Q-bit individual was defined as a string of Q-bits for the proba-
bilistic representation. To introduce the variation to the Q-bit individual, a Q-gate
was designed as a variation operator. The proposed QEA is characterized by the Q-
bit representation for the population diversity, the observation process for producing
a binary string from the Q-bit individual, the update process for driving the individ-
uals toward better solutions by the Q-gate, the migration process for more variation
of the probabilities of the Q-bit individuals, and the termination condition which
can be given by the convergence of the Q-bit individuals. The effectiveness and
applicability of QEA were verified by the theoretical analysis of the QEA algorithm

as well as the experimental results on several optimization problems.
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4. QEA Issues

In this chapter, the structure of QEA is extended for the improvement in its
performance. In an attempt to do so, the following issues are addressed: i) the
effects of changing the initial values of Q-bits since the initial values can influence
the performance of QEA (Note that in the standard QEA, the initial Q-bit is set
to (%, %) for the uniform distribution of states 0 and 1), ii) a novel variation
operatorH, gate to provide an attempt to escape effectively from local optima, and

iii) a two-phase scheme from the analysis of i).

4.1 Effects of changing the initial values of Q-bits

In the ‘initialize Q(t)’ step of Figure 3.1, all Q-bits are initialized Wi(%, %)
to represent a linear superposition of all the possible solutions with the same prob-
ability. 1t means that we have no information about the search space. Here, let us
assume that we have a little bit of information about the search space to be explored.
Then, we can see that the prior knowledge can be easily put into the initial values of
Q-hits.

For instance, let us consider the knapsack problem with 500 items, which does
not have an average knapsack capacity as a constraint, but a restrictive knapsack
capacity ofC = 2v, wherev = 10. In this case, the optimal solution contains very
few items. An infeasible search space, where the constraint is not satisfied, occupies
almost the whole search space. For this type of knapsack problem, we already have

some prior knowledge like “the optimal solution contains very few items.” From
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[(a7,59) [ (0.99,0.01)] (0.5, 0.5)] (0.01, 0.99)

~

b. 94.993 94.856 94.892
m. 86.973 81.978 80.969
500 | w. 79.942 69.983 69.996
o 3.774 5.846 5.662
t 697 4682 8231

Table 4.1: Experimental results of the knapsack problem with 500 items to show
the effects of changing the initial values of Q-bits. The population size was 15, the
global migration period 100, the local group size 3, and the number of runs 30. The
termination condition of (3.19) was used with= 0.99. b., m., andw. meanbest,
mean, andworst, respectively.c andt represent the standard deviation and the
average number of generations, respectively.

this prior knowledge, we can set the initial value of each Q—bi@ 1-— f,ﬁi),
whereg; is a small value close to zero.

Table 4.1 shows the experimental results of the knapsack problem with 500
items using the knapsack capacity to be restricted'te= 20. The table shows
that the results are highly dependent on the initial values of Q-bits. The results of
(0.99,0.01) are the best and also its average number of generations is the smallest
one. More specifically, the convergence speedf9, 0.01) is 6.7 and 11.8 times
faster than those db.5,0.5) and(0.01, 0.99), respectively. In addition to that, the
average standard deviation(@?99, 0.01) over 30 runs is the best one.

The results of Table 4.1 agree with our prediction through the prior knowledge.
It can be explained by the relation between the initial search space and the optimal
solution. If the initial search space is formed near the optimal solution, the solution
can be searched in a short span of time. To measure the distance between the initial
search space and the optimal solution, ones-number distance, defined below, can be

considered.

Definition 4.1. A ones-number distanc®,,, of the two binary stringsg; andxs,
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is defined as the difference between their numbers of ones, which is defined as

D, (x1,%x2) = |ones(x1) — ones(x2)|,

where the functiomnes(x) returns the number of ones in the binary string

The distribution of the ones-number distance between the initial search space
and the optimal solution can be obtained, since the initial search space determined
by each value of Q-bit has a distribution with respect to ones number.

Figure 4.1 shows the differences of the initial search spaces with respect to the
initial values of Q-bits. In the case of (e), the distribution of the initial search space
is nearly a random noise. It indicates that the initial search starts randomly. In
the cases of (a)-(d), the points which include less ones have higher probabilities.
On the other hand, in the cases of (f)-(i), the points which include more ones have
higher probabilities. It means that the initial search space can be formed effectively
by changing the initial values of Q-bits. It is worthwhile to mention that the initial
search space is distributed globally, although the distribution spreads to the space in-
cluding more (or less) ones depending on Q-bit values. For instance, let us consider
7-bit strings with 1 for the number of ones. There are 7 strings of which number
of ones is 1. Their integer numbers are 1, 2, 4, 8, 16, 32, and 64, respectively. It
indicates that the solutions which have the same number of ones spread widely in
the search space. The reason why the initial search space represented by the initial
values of Q-bits is distributed globally can be explained by this characteristics of
binary coding.

Figure 4.2 shows the differences of the initial search spaces with respect to the
initial values of Q-bits, when gray coding is used to convert binary string to integer
value.

Figure 4.3 shows the observed frequency of each solution with respect to the

number of ones by observing each Q-bit individuaP times. The results show
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Figure 4.1: Differences in the initial search spaces with respect to the initial values
of Q-bits. The size of the search spac@1i$ (7 bits for each x and y). Each pair

of values in parenthesis represefg, 3?). On the(z,y) plane, the darker points
have a higher probability to be present in the initial search space. The probabilities
were obtained by observing each Q-bit individu@t times.
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Figure 4.2: Differences in the initial search spaces with respect to the initial values
of Q-bits. The size of the search space'i§ (7 bits for each x and y). Each pair of
values in parenthesis represefts, 32). On the(z, y) plane, the darker points have

a higher probability to be present in the initial search space. The probabilities were
obtained by observing each Q-bit individuil® times. In particular, gray coding
was used to convert from binary string to integer value.
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logarithmic (base 10) scale is used for the vertical axis.
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clearly that the initial search space can be formed effectively by changing the initial

values of Q-bits. The frequencies were scaled by using the following equation:

~(n1)/N, (n1)/10°
fs(n1) = fr(nll)//Qm - f$4!1)//214’

ni!(m—nq)! n1!(14—nq)!

(4.1)

wheren; is the number of oneg, the scaled frequency, the observed frequency,
N, the total number of observations, amcthe length of binary solution. The value

of L, represents the number of solutions includingpnes among the whole

ni!(m—ni)

solutions.

4.2 H,.gate

The rotation gate used as a Q-gate induces the convergence of each Q-bit to
either 0 or 1. However, a Q-bit converged to either 0 or 1 cannot escape the state
by itself, although it can be changed passively by a global or local migration. If
the value ofi3|? is 0 (or 1), the observing state of the Q-bit is always O (or 1). To

prevent the premature convergence of Q-Hit,gate is defined as a Q-gate.

Definition 4.2. An H. gateis defined as a Q-gate extended from the rotation gate:
[0} 3] = He(cu, B, A6:), (4.2)

where, for[a/ 81T = R(A;)[c Bi]7,

i)if |o]? < eand|B/> > 1 —c¢,
[ 3" = [VevI—dT;
i) if [af?> > 1—eand|3/|?> <,

o BT = WVI— e va";
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Figure 4.4:H. gate based on the rotation gate.
iii) otherwise,
[ BT = [of BT,
where0 < ¢ < 1, R(A#6;) is the rotation gate, andf;, i = 1,2,--- ,m, is the

rotation angle of each Q-bit toward eitheor 1 state, depending on its sign.

Figure 4.4 shows thél. gate, wherdim._,o H.(-) is the same as the rotation
gate. While the rotation gate makes the probabilitjndt or | 3| converge to either
0 or 1, H. gate makes it converge toor (1 — ¢€). It should be noted that i is too

big, the convergence tendency of a Q-bit individual may disappear.

Theorem 4.1. The entropy of the probability distribution for the search space rep-

resented by Q-bit individual withl, gate converges to

m—h _\h m—h/1 _ \h
hzzo (m e =) (log2 (e (1—e¢) ))> , (4.3)
wherem is the length of Q-bit individual.
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Proof. Let x be the converged binary solution arl the binary solution with
Hamming distanceéx from x. Each Q-bit converges to eithéx/e, /1 —¢) or

(V1 —€,4/€) in any case. For clarification purpose, let us consider one simple
case, where all Q-bits correspondingdtaonverge tda, 3) = (1/€, /1 — ¢€). Then

the probability ofx” is described as

p(x") =1 -l

and the number of all the possibt& is

m)!

n(x") = h(m — h)!

Therefore, the entropy of the probability distribution for the search space repre-

sented by the Q-bit individual witl/. gate is obtained as

Ipx)xeX) = = p(x)log,p(x)

m

= - Z (h!(nznih)!em_h(l —e)h <10g2 (em_h(l — e)h))> .

h=0

Figure 4.5 shows the differences of the entropy of the probability distribution for
the search space among QEALs withgates fore = 0, 0.01, and 0.05, respectively.
From the results for th©ONEMAX problem of (3.9), it should be noted that the
entropy converges to the larger valueeas bigger. However, it is too big, the
mechanism for exploitation may not work.

If H. gate is used as a Q-gate, the termination conditions of (3.19) and (3.20)
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Figure 4.5: Comparison of the entropy of the probability distribution for the search
space among QEA1s witH, gates fore = 0, 0.01, and 0.05, respectively. All the
results were averaged over 30 runs for @eEMAX problem for lengthn, where

m = 16.

should be modified as

Ca = | = D2 Cola) | > (1 =20 (4.
j=1
and
Cma:r = <r§1%1be(q])) > (1 - 26)/75 (45)

respectively. To increase the period for fine tuning caused by thmindary, the

mixed termination condition can be also used as follows:
MAXGEN = 7., (4.6)

wheret., is the number of generations when the termination condition wit

(4.4) or (4.5) is satisfied and > 1.
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[ e [ o [ o0.005 0.01 0.015 [ 0.02 | 0.03
b. || 1677.9] 3.8 x 107* [ 3.8 x 107* | 2.6 x 1072 | 0.2841| 500.90
m. || 2467.5| 31583 |[4.2x10"%| 7.9145 | 67.980| 1046.6
f|w || 3624.3|| 236.87 | 7.5x107%| 118.45 | 475.05| 1763.1
o || 503.83] 60.649 | 7.2x10°| 29.541 | 104.58| 343.73
t || 4567.5| 7183.9 8817.2 7364.0 | 6207.0| 2903.2

Table 4.2: Experimental results of the Schwefel function to show the effects of
changinge for H. gate. The population size was 15, the global migration period
100, the local group size 3, the number of observations 3, and the number of runs
30. v of (4.4) was set to 0.999%., m., andw. meanbest, mean, andworst,
respectively.c andt represent the standard deviation and the average number of
generations, respectively.

To investigate the performance &f. gate, Schwefel function (see Appendix
A.2) is considered. Table 4.2 shows the effects of changifug the H. gate. As
shown in the table, the results foe= 0.01 were the best for the Schwefel function,
although the average number of generations was larger than other results. It should
be noted that it is too big, the performance would be worse than that of QEA with
the rotation gatee(= 0). While a largee (= 0.03) induces a fast premature conver-
gence, a properly selected-small valuesdf= 0.01) provides better solutions. In
particular,H. gate is recommended for a class of numerical optimization problems

which have many local optima.

4.3 Two-phase scheme

We have already verified that changing the initial values of Q-bits can provide
better performance of QEA. The initial values of Q-bits are directly connected to
the initial search space as shown in Figure 4.1. If the initial values of Q-bits can be
found to represent the initial search space with small distance to the best solution,
the Q-bit individuals can converge to the best solution effectively. To put this idea

to the algorithm, two-phase QEA (TPQEA) scheme is proposed in the following.
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Procedure TPQEA
begin
First-phase QEA
Second-phase QEA
end

Figure 4.6: Procedure TPQEA.

Procedure first-phase QEA (phase 1)
begin
t—20
initialize Q(t)
makeP(t) by observing the states f(t)
evaluateP(t)
store the best solutions amojt) into B(t)
while (not termination conditionylo
begin
t—1t+1
makeP(t) by observing the states ¢f(t — 1)
evaluateP(t)
updateQ(t) using Q-gates
store the best solutions amoit — 1) and P(t) into B(t)
if (local migration condition)
then migrateb’, to B(t) locally
end
store the initial value of Q-bit inducing the best result iftd 5]
end

Figure 4.7: First-phase QEA.
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Local-group 2

Local Local

Figure 4.8: Relations between variables for the first-phase QEA, when the popu-

lation size, the local group size, and the number of observations are 6, 3, and 3,
respectively.

TPQEA has two procedures as shown in Figure 4.6. In the first phase as shown
in Figure 4.7, a promising initial value is searched and stored[uftg3?]”. The
first phase is similar to the standard procedure of QEA except the followings:

i) The ‘initialize Q(t)’ step is different. In this step, each local group has a
different value of Q-bit from other local groups to explore a different search space

each. In thegjth local group, the initial value of Q-bit can be assigned as

(1— 25)

g+6
Yol = No— 4.7)
By = ST

where N, is the number of local groups, arid 0 < 0 < 1, is the minimum

probability of the state 1 (or 0). Equation (4.7) assigns a probability of each group
dividing an intervald, 1 — 6] into IV, equal parts.

To guarantee the homogeneity of each group, the best solbtismot used
and the global migration process is removed from the standard structure of QEA.
For example, the relations between variables are shown in Figure 4.8 when the pop-

ulation size, the local group size, and the number of observations are 6, 3, and 3,
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Procedure second-phase QEA (phase Il)
begin
initialize Q(t) using[a® 5]
makeP(t) by observing the states 6f(t)
evaluateP(t)
store the best solutions amo#ftjt) into B(t)
while (not termination-conditionylo
begin
t—t+1
makeP(t) by observing the states ¢f(t — 1)
evaluateP(t)
updateQ(t) using Q-gates
store the best solutions amoftjt — 1) and P(t) into B(t)
store the best solutioh amongB (t)
if (global migration condition)
then migrateb to B(t) globally
else if(local migration condition)
then migrateb', in B(t) to B(t) locally
end
end

Figure 4.9: Second-phase QEA.

respectively.

i) The condition of (3.19) (or (4.4)) can be used as a termination condition for
the first phase. However, if faster transition from the first phase to the second phase
is required, the termination condition of (3.20) (or (4.5)) can be used for the first
phase.

iii) At the end of the first phase, a process is added to store the initial value of
Q-bit inducing the best result infa’ 5°]7.

Figure 4.9 depicts the second phase of TPQEA. It is almost the same as the pro-
cedure of QEA, except that time initialization<— 0’ is removed and the ‘initialize

Q(t) step shall use the initial value of Q-bit, i.é® 5°]7, obtained from the first
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b s 5
ones(x)

Figure 4.10: 5-bit trap.
phase.
Let us consider the concatenated 5-bit traps as
Ntrap_l
frrap(x) = > trap(wsisy, Tsita, Tsits, Tsita, Taiys),
i=0

whereN;,,, is the number of traps and

4 —ones(x) , if ones(x) <4
trap(x) =
5

5 , if ones(x) =

To maximizef;,q,, the individuals should be able to escape from the 5-bit traps,
at(0,0,0,0,0), as shown in Figure 4.10. Table 4.3 shows the results of QEA and
TPQEA for the concatenated 5-bit traps with,,, = 20. The global maximum
value of f;,.q, is 100 when all the 100 bits are ones. While QEA fell into the trap
point (0,0,0,0,0) in 15 traps on an average, TPQEA did not fall into the traps at
all. In particular, the average number of generations of TPQEA was smaller than
QEA's, although TPQEA has two phases. However, it should be noted that TPQEA
may need a larger number of generations to find the best solution for a particular

problem as compared to QEAS, if the best solution is included in the search space
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] H QEA \TPQEA\
best 90 100
mean| 85.033 100

firap | WoOrst| 81 100
o 1.722 0
t 218 84

Table 4.3: Experimental results of the concatenated 5-bit trapsWit}), = 20.

The population size was 15, the global migration period 100, the local group size
3, and the number of runs 30. The termination condition of (4.4) was used with
~ = 0.99. v andé for the first phase of TPQEA wefe9 and0.05, respectively.c

of the H, gate wa9).01. ¢ andt represent the standard deviation and the average
number of generations, respectively.

with ones-number distance 0 from the initial search space defined with the initial

value of Q-bit,[ = —-]""

[\

4.4 Summary

In this chapter, the structure as well as some basic issues of QEA were studied
to improve its performance. In the basic QEA, the initial Q-bit was sétj@, %)
However, since the initial values could influence the performance of QEA, the ef-
fects of changing the initial values of Q-bits were investigated. A modified Q-gate
of the rotation gateH, gate which is suitable for a class of numerical optimization
problems with many local optima, was proposed that provides a scheme to escape
from local optima. And a two-phase QEA (TPQEA) scheme was also proposed
for a class of optimization problems with the global optimum which is present in
the search space with larger ones-number distance from randomly generated search
space. In particular, the experimental results of Schwefel function and the con-
catenated 5-bit traps showed the effectiveness and applicability ¢f tlygate and

TPQEA, respectively.
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5. Experiments

In this chapter, several numerical and combinatorial optimization problems are

discussed to demonstrate the effectiveness and applicability of QEA.

5.1 Numerical optimization

5.1.1 Rotation andH, gates

The representation of real number may be more suitable for numerical opti-
mization than that of binary string. Nevertheless, the six numerical optimization
functions of Sphere, Ackley, Griewank, Rastrigin, Schwefel, and Rosenbrock (see
Appendix A.2) were considered to demonstrate the effectiveness of QEA to a class
of numerical optimization.

To minimize the six functions, QEAs were tested using the parameter settings
as given in Table 5.1. And the global migration was not used. Considering the
resolutions of variables, the numbers of the Q-bits for the six functions were set
to 18, 18, 21, 17, 22, and 18 bits (per variable), respectively. Gray coding was
used to convert from binary string to real value. For the comparison purpose, the
termination condition with the maximum number of generations was used, since the
experiments referred from [80] were tested with a fixed number of generations. The
rotation angles 0B were set td00p0n 000]7 as in Section 3.4, whereand|n/|
(absolute value ofi) were set td.067, 0.067, 0.067, 0.047, 0.047, and0.04x for
the six functions, respectively.

The results taken from the reference [80] were tested using classical EP (CEP)
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QEA with | QEA with
H, gate | Rotation gate

Population size 100 100
Number of observationg 1 1

Local group size 100 100

e for H, gate 0.01 0)

Termination condition | MAX GEN MAX GEN

Table 5.1: Parameter settings of QEASs for the experiments on the numerical opti-
mization functions (A.1)-(A.6).

and fast EP (FEP). The population size was selected to be 100 for each experiment.
According to the reference, FEP provided better solutions than CEP.

Table 5.2 shows the results of the numerical functions (A.1)-(A.6) for QEA with
the H. gate, QEA with the rotation gate, FEP, and CEP. In the casg¢s gf,. and
fackiey Which are relatively simple functions compared to the other functions, QEAs
and EP had almost the same results, although the results of QEA with the rotation
gate were slightly better than the others’. However, in the cas¢g,@f,,..r and
[Rastrigin Which have many local optima, QEA with ti#& gate and FEP had better
results than the others. In particular, in the cas¢Qf.,cse, Only QEA with the
H. gate found the global solution. In the casef@fc.srock, NO algorithm found
the global solution on an average. The reason why QEAs could not find the global
solution of frosenbrock 1S described in Appendix A.3.

Figures 5.1-5.5 show the comparison between QEA withHhgate and QEA
with the rotation gate on Sphere, Ackley, Griewank, Rastrigin, and Schwefel func-
tions. In the results of Figures 5.1 and 5.2, the best results of QEA with the rotation
gate were better compared to those of QEA with FHhegate after the generation
reached 800. In the results of Figures 5.3, 5.4, and 5.5, however, it should be noted
that the best results of QEA with tHé. gate were significantly better compared to

those of QEA with the rotation gate, although the average results of QEA with the
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QEAs EP
QEAW/ H, | QEAW/R FEP CEP
(100) (100) (100) (100)
fsphere | M. || 1.8x 1072 [ 43 x 1076 [ 5.7x107* [ 22 x 107*
t=1500 | o || 1.3 x 1074 0 1.3x107% | 5.9 x 1074
fackley | M. [ 25x107% [ 4.8x107* || 1.8 x 1072 9.2
t=1500 | o || 8.1x1074 0 2.1x1073 2.8
fariewane | M. || 3.6x1072 [ 5.8 x 1072 || 1.6 x 1072 | 8.6 x 1072
t=2000 | o | 32x1072 | 7.5x 1072 || 2.2 x 1072 0.12
fRastrigin | M. | 3.9 x 1072 18.7 4.6 x 1072 89.0
=5000 | ¢ || 1.9x 107! 7.4 1.2 x 1072 23.1
fschwefer | M. || 3.8 x 1074 216.04 14.987 4652.3
t=29000 | o || 3.0x107? 163.8 52.6 634.5
FRosenbrock | M. 11.73 7.18 5.06 6.17
t =20000 | o 18.36 6.77 5.87 13.61

Table 5.2: Experimental results of the six numerical optimization functions of (A.1)-
(A.6). The results of EP were referred from [80]. The number of runs was 50. The
parenthesized values are the population sizeso, andt represent the mean best,
the standard deviation, and the maximum number of generations, respectively.
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Figure 5.1: Comparison between QEA with tHe gate and QEA with the rotation

gate on Sphere function. The parameter values were set to the same as shown in
Table 5.1. The vertical axis for (a) and (b) shows the function value, the vertical
axis for (c) shows the value @f,,, and the horizontal axis represents the number

of generations. (a) shows the best result, (b) the average result, and (c) the average
Q-bit convergence. All results were averaged over 50 runs.
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Figure 5.2: Comparison between QEA with tHe gate and QEA with the rotation

gate on Ackley function. The parameter values were set to the same as shown in
Table 5.1. The vertical axis for (a) and (b) shows the function value, the vertical
axis for (c) shows the value @f,,, and the horizontal axis represents the number

of generations. (a) shows the best result, (b) the average result, and (c) the average
Q-bit convergence. All results were averaged over 50 runs.
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Figure 5.3: Comparison between QEA with tHe gate and QEA with the rotation

gate on Griewank function. The parameter values were set to the same as shown
in Table 5.1. The vertical axis for (a) and (b) shows the function value, the vertical
axis for (c) shows the value @f,,,, and the horizontal axis represents the number

of generations. (a) shows the best result, (b) the average result, and (c) the average
Q-bit convergence. All results were averaged over 50 runs.
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Figure 5.4: Comparison between QEA with tHe gate and QEA with the rotation

gate on Rastrigin function. The parameter values were set to the same as shown in
Table 5.1. The vertical axis for (a) and (b) shows the function value, the vertical
axis for (c) shows the value @f,,,, and the horizontal axis represents the number

of generations. (a) shows the best result, (b) the average result, and (c) the average
Q-bit convergence. All results were averaged over 50 runs.
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Figure 5.5: Comparison between QEA with tHe gate and QEA with the rotation

gate on Schwefel function. The parameter values were set to the same as shown in
Table 5.1. The vertical axis for (a) and (b) shows the function value, the vertical
axis for (c) shows the value @f,,, and the horizontal axis represents the number

of generations. (a) shows the best result, (b) the average result, and (c) the average
Q-bit convergence. All results were averaged over 50 runs.
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H, gate were somewhat worse compared to those of QEA with the rotation gate.
The results of Griewank show, in particular, that the best results of QEA with the
H. gate were better, although the average results of QEA withithgate were
worse. The reason behind this type of result iskhegate, that prevents each Q-bit
converging to the final state (0 or 1). It is worthwhile to mention here that the results
of the average Q-bit convergence show that the final values for QEAs witH the
and rotation gates converge tb — 2¢) and 1, respectively. Since the converged
entropy of QEA with theH, gate is a honzero value of (4.3), the converged Q-bit
individual still includes various binary solutions. It means that the solutions selected
as a population are obtained from a little bit wide area in the search space. From
this reason, the average results of QEA with Hhegate did not converge below a
certain value.

It is also worthwhile to mention that the QEA with the rotation gate is recom-
mended for a class of unimodal functions which have no local optimum, and the
QEA with the H, gate is recommended for a class of multimodal functions which

have many local optima.

5.1.2 First hitting time

Three De Jong functions (see Appendix A.2) were considered to verify the per-
formance of QEA with a single individual. The theoretical analysis of QEA with a
single individual for theONEM AX problem was already discussed in Section 3.6.
For comparison purpose, simulated annealing (SA) was considered. The procedure
SA is described in Appendix B.1. As a performance measure of the algorithms, we
picked up the best search cost for the first hitting time over 50 runs. The number
of times the fitness function was called was regarded as the search cost, since the
evaluation of fitness function generally consumes of the most time compared to any

other function. The number of bits for the three De Jong functions was set to 25 bits
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’ H fDeJongl ‘ fDeJongQ H fDeJongS ‘

m. | 31544.9] 9196.0] 3802.1

QEA | o | 15944.0/ 1764.2| 797.8
(0.00017) | r. || 50/50| 50/50| 50/50
m. | 122712.1] 4117.2| 1229.9

QEA | o | 94058.7| 3962.7|| 3445
(0.00057) | r. || 50/50| 50/50| 50/50
m. | 141143.2] 7306.8| 894.7

QEA | o | 90850.7| 16085.5| 248.4
(0.0017) | r. || 50/50| 50/50| 50/50
m. | 299097.1] 1705.0] 1279.4

SA o || 145643.4|  826.3 782.0
(0.01) | r. | 50/50| 50/50| 50/50
m. | 185057.8] 1446.9] 1207.5"

SA o || 71646.6| 682.3| 916.2*
(.1 | r | 50/50| 50/50| 46/50
m. | 193786.4] 1446.8] 706.2*

SA o || 64214.7| 637.0| 409.7*
1o | r 50/50| 50/50| 21/50

Table 5.3: Experimental results of the three De Jong functions (A.7)-(A.9). Each
parenthesized value of QEA is the rotation angler |n|) and that of SA is the
value of cooling parametérfor its temperature scheduler. The number of runs was
50. m., o, andr. represent the mean best of search cost, the standard deviation
of search cost, and the success rate, respectively. The values markeédweith
obtained excluding the failure cases for which search cost was greateithan

(per variable). The value affor the H, gate was set t0.017.

Table 5.3 shows the experimental results for the three De Jong functions (A.7)-
(A.9). Inthe results 0f pejong1 @aNAfpe.song3, QEA with a single individual yielded
better results compared to SA. In the resultg6f j,..42, Which is relatively simple
function compared to the other functions, SA performed better compared to QEA
with a single individual. In particular, it should be noted that the resulfsef,, 43
showed that SA had several failure cases of which search cost was greatdi®than

The reason is that De Jong function (3) has many discontinuous valleys as shown
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in Figure A.2 (c) and SA may fall into one such valley. From these results, it is
worthwhile to mention that QEA with a single individual performs better although

the search space is distorted and it has many discontinuous valleys.

5.2 Combinatorial optimization

The experimental results of the knapsack problems with the average knapsack
capacity were already discussed in Section 3.3. In this section, the knapsack prob-
lem with the restrictive knapsack capacity was considered for a class of combinato-
rial optimization problem to demonstrate the applicability of TPQEA. Comparison
was made with the experimental results of QEA. The random repair method used
in Section 3.3 was considered for handling the constraint of the knapsack capacity
to compare their performance, although the greedy repair method guaranteed bet-
ter solutions for the restrictive knapsack problem. Table 5.4 shows the parameter
settings of TPQEA and QEA. The parameters of TPQEA were set to the same set
of values as those of QEA except the additional parameters for the first phase of
TPQEA. The rotation angle gf (or |n|) for Q-gate was set t0.017.

Table 5.5 shows the experimental results of the knapsack problems with 100,
250, and 500 items. As the table shows, TPQEA yielded much better results com-
pared to QEA. Moveover, the average elapsed number of generations of TPQEA is
smaller than that of QEA. More specifically, the convergence speed of TPQEA is
1.8, 2.9, and 4.0 times faster than that of QEA for 100, 250, and 500 items, respec-
tively. The results of the standard deviations show that TPQEA is more robust than
QEA for finding solutions.

Figure 5.6 shows clearly that TPQEA performs significantly better than QEA
in terms of convergence speed and the amount of profit. The transition point from
the first phase to the second phase can be found out easily. After the transition, the

rising slope of TPQEA is steeper than that of QEA. In particular, the tendency of
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QEA TPQEA
Phase || Phase Il
Population size 15 15
Number of observations 1 1
Local group size 3 3
Global migration period 100 - 100
Termination conditionzy 0.99 0.99 0.99
Equation of the termination condition (3.19) | (3.20) | (3.19)
Minimum probability of (4.7):6 - 0.01 -

Table 5.4: Parameter settings of QEA and TPQEA for the experiments on the re-
strictive knapsack problem. ‘-’ means that the parameter is not needed.

y | QEA [ TPQEA|
best || 69.998| 69.999
mean| 67.819| 68.467
100 | worst || 59.995| 64.969
o 3.774 | 2.279
t 1463 804
best || 94.998| 94.997
mean| 87.484| 90.122
250 | worst || 74.991| 84.674
o 4,604 | 3.551
t 2680 929
best || 89.998| 94.968
mean|| 81.788| 85.309
500 | worst || 69.983| 74.983
o 5.082 | 4.998
t 4624 1165

Table 5.5: Experimental results of the knapsack problem with the restrictive knap-
sack capacityC' = 20, for 100, 250, and 500 items, respectively. The parameter
values were set to the same as shown in Table 5.4, the number of runs was selected
to be 30.0 andt represent the standard deviation and the average number of gener-
ations for termination, respectively.
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Figure 5.6: Comparison of TPQEA and QEA on the restrictive knapsack problem.
The parameter values were set to the same as shown in Table 5.4. However, regard-
less of the termination criteria, the results from 1 to 1,500 generations were plotted.
The vertical axis shows the profit value of knapsack, and the horizontal axis repre-
sents the number of generations. The best profit values and the average profit values
were averaged over 30 runs.
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convergence rate is shown clearly in the results of the mean of average profits of
population. After the transition, all the population converge to better solutions at a

faster rate.

5.3 Summary

In this chapter, several numerical and combinatorial optimization problems were
discussed to demonstrate the effectiveness and applicability of QEA. From the re-
sults of the six numerical optimization functions, the QEA with the rotation gate
is recommended for a class of unimodal functions which have no local optimum,
and the QEA with thed, gate is recommended for a class of multimodal functions
which have many local optima. From the results of the three De Jong functions,
the performance of QEA with a single individual was proved to be performed well
although the search space is not simple. The experimental results of the restric-
tive knapsack problem also showed that TPQEA performed much better than QEA
for a class of optimization problems with the global optimum which is present in
the search space with larger ones-number distance from randomly generated search

space.
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6. Conclusions and Future Works

This thesis has proposed a novel quantum-inspired evolutionary algorithm (QEA)
inspired by the concept of quantum computing. A Q-bit individual is defined to be a
string of Q-bits for the probabilistic representation. To introduce the variation to the
Q-bit individual, a new Q-gate variation operator is designed. The proposed QEA
is characterized by the Q-bit representation for generating the population diversity,
the observation process for producing a binary string from the Q-bit individual, the
update process for driving the individuals toward better solutions by the Q-gate, the
migration process for more variation of the probabilities of the Q-bit individuals,
and the termination condition which can be set by the convergence of the Q-bit
individuals.

The knapsack problem is considered to be an application appropriate enough to
investigate the performance of QEA. The experimental results show that QEA per-
formed quite well even with only one Q-bit individual. The characteristics of QEA
could be verified by the simple knapsack problem with only 10 items. The results
demonstrate the effectiveness and applicability of QEA to a class of combinatorial
optimization problems.

The theoretical analysis of the QEA algorithm for tAREM AX problem shows
that QEA can maintain the balance between exploration and exploitation.

The definition of the Q-bit convergence could provide a meaningful termina-
tion criterion. By examining the effects of changing the values of the parameters
of QEA, some guidance to the parameter settings could be introduced. In particu-
lar, some research issues for QEA such as the analysis of changing the initial val-

ues of Q-bits, a novel variation operatlg gate, and a two-phase QEA (TPQEA)
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scheme are addressed to improve the performance of QEA. The experimental re-
sults of Schwefel function and the concatenated 5-bit traps show the effectiveness
and applicability of thef, gate and TPQEA, respectively.

The results from several numerical optimization problems verify that QEA can
be applied to a class of numerical as well as combinatorial optimization problems.
In fact, the results have broken the conventional belief that a binary representation is
not suitable for numerical optimization. These results extend the applicability and
effectiveness of QEA for solving a general class of optimization problems.

Future research includes studying the dependencies among Q-bits as inspired by
the concept of quantum entanglement to handle the dependencies among variables.
For example, Rosenbrock function has 30 variables which have a strong dependency
on each other. In this case, it is not easy to find the global optimum by using only a
fitness function. A technique for handling the dependencies among variables will be
useful to find the global optimum, although it may reduce the entropy of the search
space. The technique can be implemented by considering the dependencies among

Q-bits.
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Appendix A. Optimization Problems

A.1 Knapsack problem

Knapsack problem which is a well-known combinatorial optimization problem
is included in a class of NP-hard problems [81]. The knapsack problem can be
described as selecting a subset of items from among various items so that it is most
profitable, given that the knapsack has limited capacity. The 0-1 knapsack problem
is described as follows: given a setrafitems and a knapsack, select a subset of the

items to maximize the profif(x):
F) = pixs,
=1

subject to the condition
m
Zwil'i <C,
i=1

wherex = (x1---xy,), x; is 0 or 1, p; is the profit of itemi, w; is the weight of
itemi, andC is the capacity of the knapsack.4f = 1, theith item is selected for
the knapsack.

There are two types of knapsack capacity [68]:

i) average knapsack capacity
o= 13,
= 2 ‘ W;
=1
and ii) restrictive knapsack capacity= 2v.
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A.2 Numerical optimization problems

The following numerical optimization functions were considered in this thesis.

Sphere function: Minimize

o) =l (A1)

where—100.0 < x; < 100.0 and N = 30. The global minimum value i6.0 at
x = (0,0,---,0).

Ackley function: Minimize

N N
1 ) 1
f(x) = —20exp (0.2 N z;mz) — exp (N 2005(2%:@-)) + 20 + e(A.2)
where—32.0 < z; < 32.0 and N = 30. The global minimum value i8.0 at
= (0,0,---,0).

Griewank function: Minimize
1 N N X;
— cos | —= ) +1, (A.3)
= a7~ oo (37)

where—600.0 < z; < 600.0 and N = 30. The global minimum value i8.0 at
=(0,0,---,0).
Rastrigin function: Minimize
N
f(x) =10N + Z (m? — 10 cos(27x;)) , (A.4)

=1

where—5.12 < z; < 5.12 and N = 30. The global minimum value i8.0 at

=(0,0,---,0).
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Schwefel function: Minimize

N
f(x) = 418.9820N — > " a;sin(y/|i), (A.5)

i=1

where—500.0 < x; < 500.0 and N = 30. The global minimum value i6.0 at
x = (—420.9687, —420.9687, - - - , —420.9687).

Rosenbrock function: Minimize

N-1

Fx) = (100(mip1 — 27) + (w: — 1)), (A.6)

i=1

where—30.0 < z; < 30.0 and N = 30. The global minimum value i8.0 at
x=(1,1,---,1).

De Jong function (1): Minimize
f(x) =100(2? — x2)® + (1 — 21)%, (A7)

where—2.048 < z; < 2.048. The global minimum value 8.0 at(x1, x2) = (1, 1).
De Jong function (2): Minimize

5

f(x) = Z integer(z;), (A.8)

=1

where—5.12 < z; < 5.12. The global minimum value is-30 for all —5.12 <
x; < —95.0.

De Jong function (3): Minimize

2
1
= here g;(21,72) = ¢j + Y (i — aij)®, (A.9)
25— ;y W gj\T1, T2 ' i ij)
x T2 0 (01, a2) ;

f)
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Figure A.1: Numerical optimization functions of (A.1)-(A.6). Each of them has 30
variables. In these figures, however, only two variables were considered to plot their

shapes approximately.
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Figure A.2: De Jong functions of (A.7)-(A.9).

where—65.536 < z; < 65.536, K = 500, ¢; = j, and

-32 =16 O 16 32 -32 -16
-32 =32 -32 -32 -32 -—-16 -16

[ai] =

The global minimum value i8.998 at (z1, z2) = (—32, —32).

Figures A.1 and A.2 show their shapes approximately.
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A.3 Rosenbrock function

As shown in Table 5.2, no algorithm could find out the global minimum of
Rosenbrock function, although the maximum number of generations was selected
to be 20,000. In the experiments, we could find that did not converge to the
optimal valuel in most of the experiments. In particular, the errorcgd induced
the error ofry9 and the error of;; also induced the error af;.

Let us see the Rosenbrock function with respect to each péir; of; 1 1):

[ wiz1) = 100(wig1 — 27) + (2 — 1)°
= fe(iyiv1) + fs(@i). (A.10)
The function of f(x;, xz;+1) can be divided into two functionsf,(z;, z;+1) and
fs(z;) as shown in (A.10). The optimal value of is determined byf,(x;). How-

ever, since the coefficient ¢f;,1 — 22)2 in f.(zi, zi11) is too big, fs(w;) is negli-

gible. From this reason, eaah converges not to 1, but tg; 7.
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Appendix B. Iterative Search Algorithms

B.1 Simulated annealing

Simulated annealing method is quite similar to the hill climbing method [79].
Instead of picking the best move, it picks a random move. If the move actually
improves the situation, it is always executed. Otherwise, the algorithm makes the
move with some probability less than 1. The probability decreases exponentially as
time advances.

Figure B.1 shows the procedure SA which is a specific version for binary rep-
resentation. In this figurex. is a current binary strings,, a new binary string]’
the current temperaturethe time steps(7', ¢t) the scheduler for the temperatudfe
f(-) the fitness function of the problem, andndom/|0, 1] a random number from
the rang€0, 1).

There are several techniques forimplementing the temperature scheduter
In this thesis, the following technique was used for implementing the scheduler

s(T,t):

s(Tt) = (B.1)

k(t+1)’

wherek is the parameter for cooling temperature.
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Procedure SA

begin
t—20
initialize temperaturd”
select a current string,. at random
while (7" > 0) do
begin
t—1t+1
T «— s(T,t)
select a new string;,
in the neighborhood af.
by flipping a single bit ofk.
AE — f(xn) = f(xc)
if (AE > 0)
thenx, «— x,,
else if(exp®F/T > random|0, 1])
thenx,. «— x,,
end
end

Figure B.1: Simulated annealing.
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