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Abstract

This thesis proposes a novel evolutionary algorithm inspired by quantum comput-

ing, called a quantum-inspired evolutionary algorithm (QEA), which is based on

the concept and principles of quantum computing, such as a quantum bit and su-

perposition of states. Like other evolutionary algorithms, QEA is also characterized

by the representation of the individual, the evaluation function, and the population

dynamics. However, instead of binary, numeric, or symbolic representation, QEA

uses a Q-bit, defined as the smallest unit of information, for the probabilistic repre-

sentation and a Q-bit individual as a string of Q-bits. A Q-gate is introduced as a

variation operator that drives the individuals toward better solutions. The termina-

tion condition of QEA is designed by defining a new measure on the convergence of

Q-bit individuals. To analyze the characteristics of QEA, the theoretical analysis of

the QEA algorithm as well as the effects of changing parameters of QEA are exam-

ined. In particular, some issues of QEA such as the analysis of changing the initial

values of Q-bits, a novel variation operatorHε gate, and a two-phase QEA (TPQEA)

scheme are addressed to improve the performance of QEA. To demonstrate the ef-

fectiveness and applicability of QEA, experiments are carried out on the knapsack

problem, which is a well-known combinatorial optimization problem. The results

show that QEA performs well, even with a small number of population, without pre-

mature convergence as compared to the conventional genetic algorithms. Moreover,

through the experiments on numerical optimization problems, the superior perfor-

mance of QEA is also verified. These results show that QEA can be applied to a

class of numerical as well as combinatorial optimization problems.
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1. Introduction

1.1 Background and motivation

Evolutionary algorithms (EAs) are principally a stochastic search and optimiza-

tion method based on the principles of natural biological evolution. Compared to

traditional optimization methods, such as calculus-based methods and enumerative

strategies, EAs are robust, global in operation, and may be applied generally without

recourse to domain-specific heuristics, although their performance may be affected

by these heuristics. The three main-stream methods of evolutionary computation

which have been established over the past 45 years are genetic algorithms (GAs) de-

veloped by Fraser [1], Bremermann [2] and Holland [3], evolutionary programming

(EP) developed by Fogel [4], and evolution strategies (ES) developed by Rechen-

berg [5] and Schwefel [6].

EAs operate on a population of potential solutions, applying the principle of

‘survival of the fittest’ to produce successively better approximations to a solution.

At each generation of the EA, a new set of approximations is created by the process

of selecting individuals according to their level of fitness in the problem domain and

reproducing them using variation operators. This process may lead to the evolution

of populations of individuals that are better suited to their environment than the

individuals from which they were created, just as in natural adaptation.

EAs are characterized by the representation of the individual, the evaluation

function representing the fitness level of the individuals, and the population dynam-

ics such as population size, variation operators, parent selection, reproduction and

inheritance, survival competition method, etc. To have a good balance between
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exploration and exploitation, these components should be designed properly. In

particular, in this thesis the representation and population dynamics are investigated

to represent the individuals effectively to explore the search space with a smaller

number of individuals (even with only one individual for real-time application) and

to exploit the search space for a global solution within a short span of time, respec-

tively. For these purposes, some concepts of quantum computing are adopted in the

proposed evolutionary algorithm.

Quantum computing is a research area which includes concepts like quantum

mechanical computers and quantum algorithms. Quantum mechanical computers

were proposed in the early 1980s [7, 8] and their description was formalized in the

late 1980s [9, 10]. Many efforts on quantum computers have progressed actively

since the early 1990s because these computers were shown to be more powerful than

digital computers for solving various specialized problems. There are well-known

quantum algorithms such as Deutsch-Jozsa algorithm [11], Simon’s algorithm [12],

Shor’s quantum factoring algorithm [13, 14], and Grover’s database search algo-

rithm [15, 16, 17]. Shor’s algorithm finds the prime factors of ann-digit number in

polynomial-time, while the best-known classical factoring algorithms require time

O(2n
1
3 log(n)

2
3 ) [18]. Grover’s algorithm can find an item in an unsorted list ofn

items inO(
√

n) steps, while any classical algorithm needs to access the list a mini-

mum of0.5n times. If, for example, the speed of quantum or digital computer is1

MIPS, Grover’s algorithm can find the secret key of56-bit string within4 minutes in

quantum computer without any factoring algorithms, while the classical algorithm

can find it within1, 000 years [19]. In particular, since the difficulty of the factor-

ing problem is crucial for the security of the RSA cryptosystem [20] which is in

widespread use today, interest in quantum computing is increasing [21].

Research on merging evolutionary computation and quantum computing has

started since the late 1990s. It can be classified into two groups. One group

2



concentrates on generating new quantum algorithms using automatic programming

techniques such as genetic programming [18, 22, 23]. The other concentrates on

quantum-inspired evolutionary computing for a digital computer, and is a branch

of study on evolutionary computation that is characterized by certain principles of

quantum mechanics such as uncertainty, superposition, interference, etc. [24, 25,

26, 27].

Unlike other research areas, there has been relatively little work done in apply-

ing quantum computing to evolutionary algorithms. Quantum-inspired computing

was introduced in [28]. In [24], a modified crossover operator which includes the

concept of interference was introduced. In [25], a probabilistic representation and a

novel population dynamics inspired by quantum computing were proposed. In [26],

the applicability of quantum-inspired evolutionary algorithm to a parallel scheme,

particularly, PC clustering, was verified successfully. In [27], the basic structure

of quantum-inspired evolutionary algorithm (QEA) and its characteristics were for-

mulated and analyzed, respectively. According to [27], the results (tested on the

knapsack problem) of QEA were proved to be better than those of CGA (conven-

tional genetic algorithm). In [29], a QEA-based disk allocation method (QDM) was

proposed. According to the results, the average query response times of QDM were

equal to or less than those of DAGA (disk allocation methods using GA), and the

convergence speed of QDM was 3.2-11.3 times faster than that of DAGA. In [30],

QEA was applied to a decision boundary optimization for face verification. The

proposed face verification system was tested by face and non-face images extracted

from AR face database [31]. Compared to the conventional PCA (principal com-

ponents analysis) method improved results were achieved both in terms of the face

verification rate and false alarm rate. Other research on quantum-inspired comput-

ing has also been investigated [32, 33].

With no connection to quantum computing, a number of evolutionary algorithms

3



that guide the exploration of the search space by building probabilistic models of

promising solutions found have been introduced since the late 1990s [34]. These

algorithms have shown to perform well on a variety of problems. In the population-

based incremental learning (PBIL) which is a method of combining the mechanisms

of a generational genetic algorithm with simple competitive learning [35], the solu-

tions are represented by binary strings and the population of solutions is replaced

with a probability vector. The compact genetic algorithm (cGA) [36] replaces the

population with a single probability vector as in PBIL, however its modification

method of the probability vector is different from PBIL. In the extended compact

genetic algorithm (ECGA) [37], the variables are divided into a number of intact

clusters which are manipulated as independent variables. The Bayesian optimiza-

tion algorithm (BOA) [38] uses a more general class of distributions than ECGA. It

incorporates methods for learning Bayesian networks and uses these to model the

promising solutions and generate the new ones.

1.2 Research objectives and outlines

This research aims at proposing a novel evolutionary algorithm, called a quantum-

inspired evolutionary algorithm (QEA), which is based on the concept and princi-

ples of quantum computing such as a quantum bit and superposition of states. Like

any other EAs, QEA is also characterized by the representation of the individual,

the evaluation function and the population dynamics. However, instead of binary,

numeric, or symbolic representation, QEA uses a Q-bit as a probabilistic representa-

tion, defined to be the smallest unit of information. A Q-bit individual is represented

by a string of Q-bits. The Q-bit individual has the advantage that it can represent

a linear superposition of states (binary solutions) in search space probabilistically.

Thus, the Q-bit representation is a better characterization of population diversity

than any other representations. A Q-gate is also defined as a variation operator of
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Figure 1.1: Quantum-inspired evolutionary algorithm (QEA).

QEA to drive the individuals toward better solutions and eventually toward a single

state. Initially, QEA can represent diverse individuals probabilistically because a

Q-bit individual represents the linear superposition of all the possible states with

the same probability. As the probability of each Q-bit approaches either 1 or 0 by

the Q-gate, the Q-bit individual converges to a single state and the diversity property

disappears gradually. By this inherent mechanism, QEA can treat the balance be-

tween exploration and exploitation. It should be noted that although QEA is based

on the concept of quantum computing, QEA is not a quantum algorithm, but a novel

evolutionary algorithm for a digital computer as shown in Figure 1.1 [27, 39]. To

demonstrate its performance, several experiments on a class of numerical and com-

binatorial optimization problems have been carried out. The results show that QEA

performs better, even with a small population, without premature convergence as

compared to the conventional evolutionary algorithms.

In Chapter 2, evolutionary computation is introduced briefly as a general outline.

Then the history and basics of quantum computation are described. Qubit, quantum

gate, superposition, and entanglement are regarded as the basics.

In Chapter 3, Q-bit and Q-bit individual are defined for the representation of
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QEA. Then the basic structure of QEA is proposed and each step of QEA is de-

scribed from a theoretical viewpoint. The knapsack problem is considered to demon-

strate the applicability of QEA to a class of combinatorial optimization problems.

The concrete procedure QEA for the knapsack problem is described and the exper-

iments are carried out to demonstrate its performance in comparison to the conven-

tional genetic algorithms. The empirical and theoretical analyses of QEA follow to

investigate the characteristics of QEA. In particular, the termination criteria and the

effects of changing parameters are also investigated.

In Chapter 4, the basic structure of QEA is extended for the improvement in its

performance. The effects of changing the initial values of Q-bits are investigated,

since the initial values can influence the performance of QEA. A novel variation

operatorHε gate is proposed to provide an attempt to escape effectively from many

local optima. As an extended version of QEA, a two-phase QEA (TPQEA) scheme

is also proposed by analyzing the effect of changing the initial values of Q-bits. In

the first phase some promising initial values of Q-bits are searched, which will be

used in the second phase. By employing the second phase, the performance of QEA

can be increased for a class of optimization problems. To verify these issues, some

experiments have been carried out.

In Chapter 5, several numerical and combinatorial optimization problems are

picked up to demonstrate the effectiveness and applicability of QEA including the

issues of theHε gate and the TPQEA scheme.

Finally in Chapter 6, conclusions on this thesis are presented. Further research

scope is also discussed in detail.
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2. Evolutionary Computation and Quantum

Computation

2.1 Evolutionary computation

More than 45 years ago, a number of innovative researchers at different places in

the US and Europe independently came up with the idea of mimicking mechanisms

of biological evolution in order to develop powerful algorithms for problems of

adaptation and optimization. Overviews of current state of the art in the field of

evolutionary computation are given by Fogel [40] and Bäck [41].

EAs are based on computational models of fundamental evolutionary processes

such as selection, recombination and mutation. Individuals, or current approxima-

tions, are encoded as strings composed over some alphabet(s), e.g. binary, integer,

real-valued, etc., and an initial population is produced by randomly sampling these

strings. Once a population is produced, it may be evaluated using an objective func-

tion which characterizes an individual’s performance in the problem domain. The

objective function is also used as the basis for selection, and determines how well

an individual performs in its environment. A fitness value is then derived from the

raw performance measure given by the objective function, and is used to bias the se-

lection process. Highly fit individuals will be assigned a higher probability of being

selected for reproduction than the individuals with a lower fitness value. Therefore,

the average performance of individuals can be expected to increase as the best fit

individuals are more likely to be selected for reproduction, and the less fit individ-

uals are discarded. Note that individuals may be selected more than once in any

7



Procedure EA
begin

t ← 0
initialize P (t)
evaluateP (t)
while (not termination-condition)do
begin

t ← t + 1
selectP (t) from P (t− 1)
reproduce pairs inP (t)
mutate P(t)
evaluateP (t)

end
end

Figure 2.1: General evolutionary algorithm.

generation (iteration) of the EA.

Selected individuals are then reproduced, usually in pairs, through the applica-

tion of genetic operators. These operators are applied to pairs of individuals with a

given probability and result in new offsprings that contain materials exchanged from

their parents. The offsprings are then further perturbed by mutation. These new in-

dividuals then make up the next generation. The processes of selection, reproduction

and evaluation are then repeated until some termination criteria are satisfied, e.g. a

certain number of generations completed, a mean deviation in the performance of

individuals in the population is below a certain value or when a particular point in

the search space is reached. The pseudo-code of a general evolutionary algorithm is

shown in Figure 2.1.

T. Bäck described notations and definition of EAs in his book [41] as follows:
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An Evolutionary Algorithm(EA) is defined as an 8-tuple

EA = (I, Φ,Ω, Ψ, s, ι, µ, λ) (2.1)

whereI = Ax × As is the space ofindividuals, andAx, As denote arbitrary sets.

Φ : I → R denotes afitness functionassigning real values to individuals.

Ω = {ωΘ1 , · · · , ωΘz |ωΘi : Iλ → Iλ} ∪ {ωΘ0 : Iµ → Iλ} (2.2)

is a set of probabilisticgenetic operatorωΘi , each of which is controlled by specific

parameters summarized in the setsΘi ⊂ R.

sΘs : (Iλ ∪ Iλ+µ) → Iµ (2.3)

denotes theselection operator, which may change the number of individuals from

λ or µ + λ to µ, whereµ, λ ∈ N andµ = λ is permitted. An additional setΘs

or parameters may be used by the selection operator.µ is the number of parent

individuals, whileλ denotes the number of offspring individuals. Finally,ι : Iµ →
{True, F lase} is a termination criterionfor the EA, and the generation transition

functionΨ : Iµ → Iµ describes the complete process of transforming a population

into a subsequent one by applying genetic operators and selection.

The space of individuals may be arbitrarily complex, i.e. there are no restrictions

on the structure of the setsAx andAs. Even the fitness functionΦ may include some

intermediate calculation steps, one of those always being evaluation of the objec-

tive function value which provides the basis of the fitness value. Wheneverµ 6= λ,

the operator setΩ includes a distinguished operatorω0 : Iµ → Iλ which serves

to change population size formingλ offspring individuals fromµ parents. While

genetic operators are always probabilistic, selection may be probabilistic or com-

pletely deterministic. Both selection and genetic operators may be controlled by

9



Algorithm (Outline of an EA)
begin

t ← 0
P (t) ← initialize(µ)
Φ(t) ← evaluate(P (t), µ)
while (ι(P (t), Θι) 6= true)do
begin

P ′(t) ← recombine(P (t), Θr)
P ′′(t) ← mutate(P ′(t), Θm)
Φ(t) ← evaluate(P ′′(t), λ)
P (t + 1) ← select(P ′′(t),Φ(t), µ, Θs)
t ← t + 1

end
end

Figure 2.2: Outline of an EA by T. B̈ack.

some exogenous parameters. The termination criterionι may range from arbitrar-

ily complicated criteria - e.g., genotypic or phenotypic diversity of the population,

relatively improvement of the best objective function value over subsequent genera-

tions - to rather simple ones, e.g., testing whether a specified number of generations

is completed.

The description given above can be translated into a general algorithmic outline

of an EA. Θm, Θr, Θι, andΘs denote the parameters of mutation, recombina-

tion, termination, and genetic operators, respectively, andt denotes the generation

counter. P (t) andΦ(t) are the population and the fitness at generationt, respec-

tively, andµ andλ denote the parent population size and offspring population size,

respectively [42].

However, it should be noted that the notations of QEA proposed in this thesis

are different from those given above.

The three main-stream methods of evolutionary computation are genetic algo-
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ES EP GAs

Representation Real-valued Real-valued Binary-valued
Fitness is Objective Scaled objective Scaled objective

function value function value function value
Self- Standard None None
adaptation deviations and (standard EP)

rotation angles variances
(meta-EP)

Mutation Gaussian, Gaussian, Bit-inversion,
main operator only operator background operator

Recombination Discrete and None Crossover,
intermediate, only sexual,
sexual and main operator
panmictic

Selection Deterministic Probabilistic, Probabilistic
extinctive based on

preservation

Table 2.1: Main characteristics of EAs.

rithms (GAs) developed by Fraser [1], Bremermann [2] and Holland [3], evolu-

tionary programming (EP) developed by Fogel [4], and evolution strategies (ES)

developed by Rechenberg [5] and Schwefel [6].

Genetic algorithms emphasize recombination (crossover) as the most important

search operator and apply mutation with very small probability solely as a back-

ground operator. They also use a probabilistic selection operator (proportional se-

lection) and often rely on a binary representation of individuals [43, 44, 45].

Evolution strategies use normally-distributed mutations to modify real-valued

vectors and emphasize mutation and recombination as essential operators for search-

ing in the search space and in the strategy parameter space at the same time. The

selection operator is deterministic, and parent and offspring population sizes usually

differ from each other [46].

Evolutionary programming emphasizes mutation and does not incorporate the

11



recombination of individuals. Similarly to evolution strategies, when approaching

real-valued optimization problems, evolutionary programming also works with nor-

mally distributed mutations and extends the evolutionary process to the strategy

parameters. The selection operator is probabilistic. Presently, most applications are

reported for search spaces involving real-valued vectors, although the algorithm was

originally developed to evolve finite-state machines [47].

The most important characteristics of EAs are summarized in Table 2.1 [48].

2.2 Quantum computation

Quantum computation is a research area that is based on the characteristics of

quantum mechanics such as uncertainty, superposition, interference, and entangle-

ment to process information through novel methods basically different from con-

ventional techniques. Quantum computation is referred to as quantum information

science, including quantum cryptography [49], quantum teleportation [50] as well

as quantum computing. Quantum computing deals with two main topics: quantum

computer and quantum algorithm.

2.2.1 History of quantum computation

The universal Turing machine (TM) is perhaps the most general computer possi-

ble, and all general purpose computers are approximations to it [51]. The universal

TM can simulate any TM with perfect precision, where a TM in turn is a theoretical

model that can simulate the execution of a single algorithm on a digital computer.

However, R. Landauer pointed out that erasure of information is necessarily a dissi-

pative process. His insight is that erasure always involves the compression of phase

space, and so is irreversible [52]. In 1973, C. H. Bennett found that classical com-

putation can be broken into a series of steps, each logically reversible, and this in

turn allows physical reversibility of the computation [53]. P. Benioff proposed quan-

12



tum mechanical hamiltonian models of TMs which do not dissipate any energy and

operate at the quantum limit in that the system (energy uncertainty)/(computation

speed) is close to the limit given by the time-energy uncertainty principle [7, 54].

The models, however, are different from the concept of a current quantum computer.

R. Feynman showed how a quantum system could be used to perform computations

and could act as a simulator for probabilistically weighted quantum processes [8].

D. Deutsch showed that every finitely realizable physical system can be per-

fectly simulated by a universal quantum computer operating by finite means [9].

He also analyzed the role of quantum parallelism, and commented on the role of

quantum complexity theory. A theory of quantum computational networks which

is a generalization of the theory of quantum logic gates was also described by him

[10]. In a paper with R. Jozsa, he described an algorithm that illustrates the power

of quantum computation [11].

The real interest in exploring the bridge between physics and computation arose

when quantum algorithms which improved over their classical counterparts were

proposed [13, 12, 15]. In [13], P. Shor proposed a factoring algorithm for a quan-

tum computer that finds the prime factors of a composite integer more efficiently

than is possible with the known algorithms for a classical computer. Since the diffi-

culty of the factoring problem is crucial for the security of a public key encryption

system, interest in quantum computing is increasing. In [12], D. Simon presented

an expected polynomial-time algorithm for a quantum computer that distinguishes

between two reasonably natural classes of polynomial-time computable function.

In [15], L. K. Grover proposed an algorithm which achieves quadratic speedup for

the classic problem of database search. In the problem of a phone directory con-

tainingN names arranged in completely random order, for example, any classical

algorithm (whether deterministic or probabilistic) needs to access a database a min-

imum of 0.5N times to find someone’s phone number with a probability of50%.
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Digital computer Quantum computer

Information Boolean (bit) Boolean (qubit)
Information Voltage of wire State of spin-12 system
implementation
Bit Added or removed Conserved
Reversibility Irreversible Conserved
Gate Spatially arranged Time-ordered

combination of transistors unitary operators

Table 2.2: Differences between a digital computer and a quantum computer.

Using the Grover’s algorithm, however, the desired phone number can be obtained

in only O(
√

N) accesses to the database, since quantum mechanical systems can be

in a superposition of states and simultaneously examine multiple names.

2.2.2 Basics of quantum computation

The smallest unit of digital information is a bit, which takes one of the two

possible values{0, 1}. The corresponding unit of quantum information stored in a

two-state quantum computer is called a quantum bit or qubit [55, 56]. A qubit may

be in the ‘1’ state, in the ‘0’ state, or in any superposition of the two. It describes

a state in the simplest possible quantum system. Table 2.2 shows the differences

between a digital computer and a quantum computer [57].

The state of a qubit can be represented as

|ψ〉 = α|0〉+ β|1〉, (2.4)

whereα andβ are complex numbers that specify the probability amplitudes of the

corresponding states [58]. A qubit is a state in a two-dimensional Hilbert space that

can take any value of the form (2.4).|α|2 gives the probability that the qubit will be

found in the ‘0’ state and|β|2 gives the probability that the qubit will be found in

14



the ‘1’ state. Normalization of the state to unity guarantees

|α|2 + |β|2 = 1. (2.5)

If there is a system ofm-qubits, the system can represent2m states at the same time.

However, in the act of observing a quantum state, it collapses to a single state [59].

The state of a qubit can be changed by the operation with a quantum gate. A

quantum gate is a reversible gate and can be represented as a unitary operator,U

acting on the qubit basis states satisfyingU †U = UU †, whereU † is the Hermitian

adjoint ofU . There are several quantum gates, such as NOT gate, Controlled NOT

gate, Hadamard gate, Square root of NOT gate, Phase gate, Controlled Phase Shift

gate, etc. [60]. A NOT gate is

UNOT =


 0 1

1 0


 ,

and its operation is shown as follows:

|0〉 −→ |1〉

|1〉 −→ |0〉.

In Controlled NOT (CNOT) gate, the NOT operation is only operative when the

state of the controlled qubit is ‘1’ state. The CNOT gate is

UCNOT (1, 2) =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




15



and its operation is shown as follows:

|00〉 −→ |00〉, |01〉 −→ |01〉,

|10〉 −→ |11〉, |11〉 −→ |10〉.

A Hadamard gate is

UH =
1√
2


 1 1

1 −1


 ,

and its operation is shown as follows:

|0〉 −→ |0〉+ |1〉√
2

|1〉 −→ |0〉 − |1〉√
2

.

UH transforms a basis vector into superpositions. A Square Root of NOT gate is as

follows:

U√NOT =
1
2


 1 + i 1− i

1− i 1 + i


 ,

U√NOT U√NOT = UNOT .

A Phase gate and a Controlled Phase Shift (CPS) gate are

Uφ =


 1 0

0 eiφ




16



and

UCPS =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiφ




,

respectively. Quantum gates are the basic units of quantum algorithms.

The power of quantum computation is characterized by the quantum parallelism

based on superposition and entanglement. If, for example, two qubits are not sepa-

rable, their state is entangled [60]. The difference between ‘unentangled’ and ‘en-

tangled’ states is shown in the following.

|ψ〉s =
1
2
|00〉+

1
2
|01〉+

1
2
|10〉+

1
2
|11〉 (2.6)

= (
1√
2
|0〉+

1√
2
|1〉)( 1√

2
|0〉+

1√
2
|1〉)

= |ψ〉q1 ⊗ |ψ〉q2

|ψ〉e =
1√
2
|00〉+

1√
2
|11〉 (2.7)

6= |ψ〉q1 ⊗ |ψ〉q2

While the state|ψ〉s of (2.6) is superposed but not entangled, the state|ψ〉e of (2.7)

is superposed and entangled. The entangled state cannot be expressed by a tensor

product of qubits.

2.3 Summary

In this chapter, evolutionary computation was introduced briefly as a general

outline. The history and basics of quantum computation were also described.

17



3. Quantum-inspired Evolutionary Algorithm

(QEA)

Inspired by the concept of quantum computing, QEA is designed with a novel

Q-bit representation, a Q-gate as a variation operator, and an observation process.

The representation, the proposed algorithm, and its characteristics are described in

the following.

3.1 Representation

A number of different representations can be used to encode the solutions onto

individuals in evolutionary computation. The representations can be classified broadly

as binary, numeric, and symbolic [61]. QEA uses a new representation, called a Q-

bit, for the probabilistic representation that is based on the concept of qubits, and a

Q-bit individual as a string of Q-bits, which are defined below.

Definition 3.1. A Q-bit is defined as the smallest unit of information in QEA, which

is defined with a pair of numbers,(α, β), as


 α

β


 ,

where|α|2 + |β|2 = 1. |α|2 gives the probability that the Q-bit will be found in the

‘0’ state and|β|2 gives the probability that the Q-bit will be found in the ‘1’ state.

A Q-bit may be in the ‘1’ state, in the ‘0’ state, or in a linear superposition of

the two states.
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Definition 3.2. A Q-bit individualas a string ofmQ-bits is defined as


 α1

β1

∣∣∣∣∣∣
α2

β2

∣∣∣∣∣∣
· · ·
· · ·

∣∣∣∣∣∣
αm

βm


 , (3.1)

where|αi|2 + |βi|2 = 1, i = 1, 2, · · · ,m.

Q-bit representation has the advantage that it is able to represent a linear super-

position of states. If there is, for instance, a three-Q-bit system with three pairs of

amplitudes such as




1√
2

1√
2

∣∣∣∣∣∣

1√
2

−1√
2

∣∣∣∣∣∣

1
2√
3

2


 , (3.2)

then the states of the system can be represented as

1
4
|000〉+

√
3

4
|001〉 − 1

4
|010〉 −

√
3

4
|011〉 (3.3)

+
1
4
|100〉+

√
3

4
|101〉 − 1

4
|110〉 −

√
3

4
|111〉.

The above result means that the probabilities to represent the states|000〉, |001〉,
|010〉, |011〉, |100〉, |101〉, |110〉, and|111〉 are 1

16 , 3
16 , 1

16 , 3
16 , 1

16 , 3
16 , 1

16 , and 3
16 ,

respectively. Consequently, the three-Q-bit system of (3.2) contains information of

eight states.

Evolutionary algorithm with Q-bit representation has a better characteristic of

population diversity than any other representations, since it can represent linear su-

perposition of states probabilistically. Only one Q-bit individual such as (3.2) is

enough to represent eight states, but in binary representation, at least eight strings,

(000), (001), (010), (011), (100), (101), (110) and(111), are needed.
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3.2 Basic structure of QEA

QEA is a probabilistic algorithm similar to other evolutionary algorithms. QEA,

however, maintains a population of Q-bit individuals,Q(t) = {qt
1,q

t
2, · · · ,qt

n} at

generationt, wheren is the size of population, andqt
j is a Q-bit individual defined

as

qt
j =


 αt

j1

βt
j1

∣∣∣∣∣∣
αt

j2

βt
j2

∣∣∣∣∣∣
· · ·
· · ·

∣∣∣∣∣∣
αt

jm

βt
jm


 , (3.4)

wherem is the number of Q-bits, i.e., the string length of the Q-bit individual, and

j = 1, 2, · · · , n.

Figure 3.1 and 3.2 show the procedure QEA and the overall structure of QEA

that can be explained in the following manner:

i) In the step of ‘initializeQ(t),’ α0
i andβ0

i , i = 1, 2, · · · ,m, of all q0
j = qt

j |t=0,

j = 1, 2, · · · , n, are initialized with 1√
2
. It means that one Q-bit individual,q0

j rep-

resents the linear superposition of all the possible states with the same probability:

|ψq0
j
〉 =

2m∑

k=1

1√
2m
|Xk〉, (3.5)

whereXk is thekth state represented by the binary string(x1x2 · · ·xm), where

xi, i = 1, 2, · · · , m, is either0 or 1 according to the probability of either|α0
i |2 or

|β0
i |2, respectively. However, it should be noted that the performance of QEA can be

influenced by the initial value. The effect of the initial value is discussed in Section

4.1.

ii) This step makes binary solutions inP (0) by observing the states ofQ(0),

whereP (0) = {x0
1,x

0
2, · · · ,x0

n} at generationt = 0. One binary solutionx0
j ,

j = 1, 2, · · · , n, is a binary string of lengthm, which is formed by selecting either

0 or 1 for each bit using the probability, either|α0
i |2 or |β0

i |2, i = 1, 2, · · · ,m, of
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Procedure QEA
begin

t ← 0
i) initialize Q(t)
ii) makeP (t) by observing the states ofQ(t)
iii) evaluateP (t)
iv) store the best solutions amongP (t) into B(t)
v) while (not termination condition)do

begin
t ← t + 1

vi) makeP (t) by observing the states ofQ(t− 1)
vii) evaluateP (t)
viii) updateQ(t) using Q-gates
ix) store the best solutions amongB(t− 1) andP (t) into B(t)
x) store the best solutionb amongB(t)
xi) if (global migration condition)

then migrateb to B(t) globally
xii) else if(local migration condition)

then migratebt
j in B(t) to B(t) locally

end
end

Figure 3.1: Procedure QEA.
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Figure 3.2: Overall structure of QEA.

q0
j , respectively. In a quantum computer, in the act of observing a quantum state, it

collapses to a single state. However, collapsing into a single state does not occur in

QEA, since QEA is working on a digital computer, not a quantum computer.

iii) Each binary solutionx0
j is evaluated to give a measure of its fitness.

iv) The initial best solutions are then selected among the binary solutionsP (0),

and stored intoB(0), whereB(0) = {b0
1,b

0
2, · · · ,b0

n}, andb0
j

(
bt

j |t=0

)
is the

same asx0
j at the initial generation.

v) Until the termination condition is satisfied, QEA is running in thewhile loop.

In particular, termination criteria are described in Section 3.7.

vi, vii) In the while loop, binary solutions inP (t) are formed by observing the

states ofQ(t− 1) as in step ii), and each binary solution is evaluated for the fitness

value. It should be noted thatxt
j in P (t) can be formed by multiple observations of

qt−1
j in Q(t−1). In this case,xt

j should be replaced byxt
jl

, wherel is an observation

index.

viii) In this step, Q-bit individuals inQ(t) are updated by applying Q-gates

defined below.
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Definition 3.3. A Q-gateis defined as a variation operator of QEA, by which opera-

tion the updated Q-bit should satisfy the normalization condition,|α′|2 + |β′|2 = 1,

whereα′ andβ′ are the values of the updated Q-bit.

The following rotation gate is used as a basic Q-gate in QEA, such as

U(∆θi) =


 cos(∆θi) − sin(∆θi)

sin(∆θi) cos(∆θi)


 , (3.6)

where∆θi, i = 1, 2, · · · ,m, is a rotation angle of each Q-bit toward either0 or 1

state depending on its sign.∆θi should be designed in compliance with the appli-

cation problem.∆θi can be obtained as a function of theith bit of the best solution

bt
j , theith bit of the binary solutionxt

j , and some meaningful conditions. It should

be noted that NOT gate, controlled NOT gate, or Hadamard gate can be used as a

Q-gate. NOT gate changes the probability of the 1 (or 0) state to that of the 0 (or 1)

state. It can be used to escape a local optimum. In Controlled NOT gate, one of the

two bits should be a control bit. If the control bit is 1, the NOT operation is applied

to the other bit. It can be used for the problems which have a large dependency of

two bits. Hadamard gate is suitable for the algorithms which use the phase informa-

tion of Q-bit as well as the amplitude information. And it should be noted thatHε

gate which is a novel Q-gate as a variation operator is designed in Section 4.2.

ix, x) The best solutions amongB(t− 1) andP (t) are selected and stored into

B(t), and if the best solution stored inB(t) is better fitted than the stored best

solutionb, the stored solutionb is replaced by the new one.

xi, xii) If the global migration condition is satisfied, the best solutionb is mi-

grated toB(t) globally. If the local migration condition is satisfied, the best one

in a local group inB(t) is migrated to others in the same local group. The mi-

gration process defined below can induce a variation of the probabilities of a Q-bit

individual.
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Definition 3.4. A migrationin QEA is defined as the process of copyingbt
j in B(t)

or b to B(t). A global migrationis implemented by replacing all the solutions in

B(t) by b, and alocal migration is implemented by replacing all the solutions in

the same local group by the best one of them.

Definition 3.5. A local groupin QEA is defined as the subpopulation affected mu-

tually by a local migration, and its size is the number of individuals in the local

group.

3.3 Application example: The knapsack problem

In this section, the detailed algorithm of QEA for the knapsack problem is pre-

sented. The knapsack problem (see Appendix A.1) is considered to demonstrate

the applicability of QEA to a class of combinatorial optimization problems. For

comparison purpose, three types of GA methods are described briefly.

3.3.1 QEA for the knapsack problem

QEA for the knapsack problem consists of a basic structure of QEA and a ran-

dom repair process to satisfy the capacity constraint. Figure 3.3 shows the algorithm

for the knapsack problem.

A Q-bit individual of lengthm represents a linear superposition of solutions to the

problem. The length of the Q-bit individual is the same as the number of items.

The initialization step is the same as that of the basic structure of QEA in Section

3.2. Theith item can be selected for the knapsack with a probability of|βi|2 or

(1 − |αi|2). For every bit in the binary stringxt
j , j = 1, 2, · · · , n, in P (t), a

random numberr is generated from the range[0..1]; if r < |βi|2, the bit of the

binary string is set to1. Thus, a binary string of lengthm is formed from the Q-bit

individual, which represents a solution observed from thejth Q-bit individual. For
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Procedure QEA for the knapsack problem
begin

t ← 0
initialize Q(t)
makeP (t) by observing the states ofQ(t)
repair P (t)
evaluateP (t)
store the best solutions amongP (t) into B(t)
while (t < MAX GEN) do
begin

t ← t + 1
makeP (t) by observing the states ofQ(t− 1)
repair P (t)
evaluateP (t)
updateQ(t)
store the best solutions amongB(t− 1) andP (t) into B(t)
store the best solutionb amongB(t)
if (global migration condition)
then migrateb to B(t) globally
else if(local migration condition)
then migratebt

j in B(t) to B(t) locally
end

end

Figure 3.3: Procedure QEA for the knapsack problem.

notational simplicity,x andq are used instead ofxt
j andqt

j , respectively. To obtain

the binary stringx, the step of “make P (t) by observing the states ofQ(t)” can

be implemented for each Q-bit individual as shown in Figure 3.4. When the binary

string violates the capacity constraint, the random repair method shown in Figure

3.5 is employed, although the greedy repair method guarantees the better solutions.

The update procedure of Q-bits is presented in Figure 3.6. A rotation gate

U(∆θi) is employed to update a Q-bit individualq as a variation operator.(αi, βi)
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Procedure make (x)
begin

i ← 0
while (i < m) do
begin

i ← i + 1
if random[0, 1) < |βi|2
then xi ← 1
elsexi ← 0

end
end

Figure 3.4: Procedure make.

Procedure repair (x)
begin

knapsack-overfilled← false
if

∑m
i=1 wixi > C

then knapsack-overfilled← true
while (knapsack-overfilled)do
begin

select anith item from the knapsack
xi ← 0
if

∑m
i=1 wixi ≤ C

then knapsack-overfilled← false
end
while (not knapsack-overfilled)do
begin

select ajth item from the knapsack
xj ← 1
if

∑m
i=1 wixi > C

then knapsack-overfilled← true
end
xj ← 0

end

Figure 3.5: Procedure repair.
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Procedure update (q)
begin

i ← 0
while (i < m) do
begin

i ← i + 1
determine∆θi with the lookup table
obtain(α′i, β

′
i) from the following:

if (q is located in the first/third quadrant)
then [α′i β′i]

T = U(∆θi) [αi βi]
T

else[α′i β′i]
T = U(−∆θi) [αi βi]

T

end
q ← q′

end

Figure 3.6: Procedure update.

of theith Q-bit is updated as follows:


 α′i

β′i


 =


 cos(∆θi) − sin(∆θi)

sin(∆θi) cos(∆θi)





 αi

βi


 . (3.7)

Figure 3.7 depicts the polar plot of the rotation gate for Q-bit individuals. In

this knapsack problem, the angle parameters used for the rotation gate are shown in

Table 3.1. Let us define an angle vectorΘ = [θ1 θ2 · · · θ8]T , whereθ1, θ2, · · · , θ8

can be selected easily by intuitive reasoning. For example, ifxi andbi are0 and1,

respectively, and if the conditionf(x) < f(b) is true, then:

i) if the Q-bit is located in the first or the third quadrant in Figure 3.7,θ3, the

value of∆θi is set to a positive value to increase the probability of the state

|1〉;

ii) if the Q-bit is located in the second or the fourth quadrant,−θ3 should be
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Figure 3.7: Polar plot of the rotation gate for Q-bit individuals.

used to increase the probability of the state|1〉.

If xi andbi are1 and0, respectively, and if the conditionf(x) < f(b) is true, then:

i) if the Q-bit is located in the first or the third quadrant,θ5 is set to a negative

value to increase the probability of the state|0〉;

ii) if the Q-bit is located in the second or the fourth quadrant,−θ5 should be

used to increase the probability of the state|0〉.

If it is ambiguous to select a positive or a negative number for the values of the

angle parameters, it is recommended to set the values to0. In the knapsack problem,

θ3 = 0.01π, θ5 = −0.01π, and0 for the rest were used. The magnitude of∆θi has

an effect on the speed of convergence, but if it is too big, the solutions may diverge or

converge prematurely to a local optimum. The values ranging from0.001π to 0.1π

are recommended for the magnitude of∆θi, although they depend on the problems.

The sign of∆θi determines the direction of convergence. The verification of the

angle selection is presented in Section 3.4.
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xi bi f(x) < f(b) ∆θi

0 0 true θ1

0 0 false θ2

0 1 true θ3

0 1 false θ4

1 0 true θ5

1 0 false θ6

1 1 true θ7

1 1 false θ8

Table 3.1: Lookup table of∆θi, wheref(·) is the profit, andbi andxi are theith
bits of the best solutionb and the binary solutionx, respectively. In the knapsack
problem,θ1 = 0, θ2 = 0, θ3 = 0.01π, θ4 = 0, θ5 = −0.01π, θ6 = 0, θ7 = 0,
θ8 = 0 were used.

3.3.2 GA methods for the knapsack problem

There are several GA methods for the knapsack problem [61, 62, 63, 64, 65,

66, 67]. In this section, three types of GA methods are described and tested for the

knapsack problem: GAs based on penalty functions, GAs based on repair methods,

and GAs based on decoders [68].

In these GAs based on penalty functions, a binary string of the lengthm repre-

sents a chromosomex to the problem. The profitf(x) of each string is determined

as

f(x) =
m∑

i=1

pixi − Pen(x),

wherePen(x) is a penalty function. There are several possible strategies for as-

signing the penalty function [69, 70]. Two types of penalties are considered, such

as logarithmic penalty and linear penalty:

Pen1(x) = log2

(
1 + ρ

(
m∑

i=1

wixi − C

))

Pen2(x) = ρ

(
m∑

i=1

wixi − C

)
,
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whereρ is maxi=1···m{pi/wi}.
In GAs based on repair methods, the profitf(x) of each string is determined as

f(x) =
m∑

i=1

pix
′
i,

wherex′ is a repaired vector of the original vectorx. Original chromosomes are

replaced with a5% probability in the experiment. The two repair algorithms con-

sidered here differ only in selection procedure, which chooses an item for removal

from the knapsack:

Rep1 (random repair): the selection procedure selects a random element from

the knapsack,

Rep2 (greedy repair): all items in the knapsack are sorted in the decreasing

order of their profit to weight ratios, and the selection procedure always chooses the

last item for deletion.

A possible decoder for the knapsack problem is based on an integer representa-

tion. Each chromosome is a vector ofm integers; theith component of the vector is

an integer in the range from1 to (m− i + 1). The ordinal representation references

a listL of items; a vector is decoded by selecting appropriate item from the current

list.

Dec (random decoding): the build procedure creates a listL of items such that

the order of items on the list corresponds to the order of items in the input file which

is random.

3.3.3 Experimental results

In all experiments, strongly correlated sets of data were considered:

wi = uniformly random[1, 10],

pi = wi + 5.
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The average knapsack capacity (see Appendix A.1) was used for the knapsack con-

straint. Three knapsack problems with 100, 250, and 500 items were considered,

and the data were unsorted.

The population sizes of QEA1, QEA2, and QEA3 were set to 1, 10, and 10,

respectively. The global migration period in generation of QEA2 was 1 and that

of QEA3 was 100. In QEA2, only global migration was used, and in QEA3, both

global and local migrations were used. The local migration was implemented be-

tween each pair of neighboring solutions inB(t) every generation, and the local

group size was 2. Figure 3.8 shows the results of QEA1, QEA2, and QEA3 on the

knapsack problems with 100, 250 and 500 items for finding good parameter settings

of θ3 andθ5 of the lookup table. The values of0.0025π, 0.005π, 0.01π, 0.02π, and

0.05π were tested forθ3 and−θ5. All the best profits were averaged over 30 runs,

and the maximum number of generations was 1,000. It should be noted that the

results of the cases with the same value ofθ3 and−θ5 were better than the oth-

ers. From the results, the values of0.01π and−0.01π were selected forθ3 andθ5,

respectively.

The population sizes of conventional GAs (CGAs) were 1 and 10. To discover

good parameter settings of CGAs, the values of 0.001, 0.01, 0.05, and 0.1 for mu-

tation and of 0.01, 0.05, 0.1, 0.3, 0.5, and 0.7 for two-point crossover were tried on

six CGAs:Pen1, Pen2, Rep1, Rep2, Pen2 + Rep1, andPen2 + Rep2 (Dec was

not included in these experiments for finding parameters, since it took a long time to

evolve and had worse performance as compared to other CGAs).Pen2+Rep1 and

Pen2 + Rep2 were designed by using a linear penalty function and random repair

algorithm, and a linear penalty function and greedy repair algorithm, respectively.

That is, 288 experiments per problem were tried (24 parameter settings× 6 CGAs

× 2 population sizes). Figure 3.9 shows the results of six CGAs on the knapsack

problems with 100, 250 and 500 items to find good parameter settings. All the best
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CGAs QEAs
Rep2 Rep2 QEA1 QEA2 QEA3
(1) (10) (1) (10) (10)

b. 592.4 607.7 597.7 612.7 612.7
m. 576.4 599.2 591.8 606.3 609.5

100 w. 557.2 587.6 582.5 597.7 607.6
σ 7.975 4.673 4.840 3.308 2.404
te 0.015 0.127 0.021 0.199 0.203

b. 1444.9 1479.8 1480.2 1515.2 1525.2
m. 1415.1 1462.5 1464.5 1508.1 1518.7

250 w. 1394.2 1440.2 1445.1 1495.2 1515.2
σ 12.480 8.788 9.554 5.427 2.910
te 0.035 0.308 0.055 0.531 0.558

b. 2820.0 2895.4 2899.7 3004.6 3025.8
m. 2772.9 2864.5 2876.4 2980.8 3008.0

500 w. 2712.3 2841.1 2836.2 2966.3 2996.1
σ 21.453 15.257 12.832 9.411 8.039
te 0.068 0.615 0.117 1.212 1.258

Table 3.2: Experimental results of the knapsack problem. The number of items
100, 250 and 500, the maximum number of generations 1,000, the number of runs
30. The parenthesized values are the population sizes.Rep2 means the algorithm
implemented by the greedy repair method, andb., m., andw. meanbest, mean,
andworst, respectively.σ andte(sec/run) represent the standard deviation and the
elapsed time per run, respectively.

profits were averaged over 30 runs, and the maximum number of generations was

1,000. From Figure 3.9, we could select(0.05, 0.1) for the population size 1 and

(0.01, 0.7) for the population size 10 as ordered pairs of mutation and crossover

probabilities that gave the maximum profit.

As a performance measure of the algorithms, we collected the best solution

found within 1,000 generations over 30 runs, and we checked the elapsed time per

run, which are summarized in Table 3.2, where onlyRep2 among CGAs is shown

because it outperformed all other CGAs. As Table 3.2 shows, QEAs yielded much

better results compared toRep2, except in the results ofRep2 (10) andQEA1 with

32



100 items, which, however, is a relatively simple one compared to the other cases

(250 and 500 items). The results show that QEAs perform well even with a small

population. In the cases of 250 and 500 items,QEA1 found better solutions within

a short span of time as compared to CGAs’.

Figure 3.10 shows the progress of the mean of best profits and the mean of av-

erage profits of population found by QEA2, QEA3 and CGA (Rep2) over 30 runs

for 100, 250 and 500 items. QEAs performed a lot better than CGA in terms of

convergence rate and profit amount. QEAs showed a faster convergence rate than

CGA. QEAs’ final profits were much larger than CGA’s in 1,000 generations. The

tendency of convergence is shown clearly in the results of the mean of average

profits for the population. In the beginning, the convergence rates of all the al-

gorithms increased. However, the convergence rate of CGA decreased gradually

due to its premature convergence. As shown in Figure 3.10 (d) and (f), QEAs

displayed no premature convergence in average profits throughout the 1,000 gen-

erations. In particular, the results on QEA2 and QEA3 should be mentioned that

initially, QEA3 showed a slower convergence rate than QEA2. However, QEA3

outperformed QEA2 in profits after about 500 generations, since QEA3, with a

global migration process every 100 generations and a local migration process in

every generation, can increase the population diversity.
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Figure 3.8: Best profits of QEAs on the knapsack problems with 100, 250 and 500
items to find good parameter settings ofθ3 andθ5 of Table 3.1. The vertical axis
is the best profit averaged over 30 runs, and the horizontal axis is the parameter
settings of ordered pairs ofθ3 and−θ5. δ1, δ2, δ3, δ4, andδ5 are0.0025π, 0.005π,
0.01π, 0.02π, and0.05π, respectively.
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(b) Population size 10 (100 items)

1300

1320

1340

1360

1380

1400

1420

Pen1
Pen2
Rep1
Rep2
P2R1
P2R2

m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4
c1 c1 c1 c1 c2 c2 c2 c2 c3 c3 c3 c3 c4 c4 c4 c4 c5 c5 c5 c5 c6 c6 c6 c6

PMut.
PCro.

P
ro

fi
t

1300

1320

1340

1360

1380

1400

1420

Pen1
Pen2
Rep1
Rep2
P2R1
P2R2

Pen1
Pen2
Rep1
Rep2
P2R1
P2R2

m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4
c1 c1 c1 c1 c2 c2 c2 c2 c3 c3 c3 c3 c4 c4 c4 c4 c5 c5 c5 c5 c6 c6 c6 c6

PMut.
PCro.

m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4m1 m2 m3 m4m1 m2 m3 m4 m1 m2 m3 m4m1 m2 m3 m4 m1 m2 m3 m4m1 m2 m3 m4 m1 m2 m3 m4m1 m2 m3 m4 m1 m2 m3 m4m1 m2 m3 m4 m1 m2 m3 m4m1 m2 m3 m4
c1 c1 c1 c1 c2 c2 c2 c2 c3 c3 c3 c3 c4 c4 c4 c4 c5 c5 c5 c5 c6 c6 c6 c6c1 c1 c1 c1c1 c1 c1 c1 c2 c2 c2 c2c2 c2 c2 c2 c3 c3 c3 c3c3 c3 c3 c3 c4 c4 c4 c4c4 c4 c4 c4 c5 c5 c5 c5c5 c5 c5 c5 c6 c6 c6 c6c6 c6 c6 c6

PMut.
PCro.

P
ro

fi
t
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(d) Population size 10 (250 items)
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(f) Population size 10 (500 items)

Figure 3.9: Comparison of CGAs on the knapsack problems with 100, 250 and 500
items to find good parameter settings. The vertical axis is the best profit averaged
over 30 runs, and the horizontal axis is the parameter settings of ordered pairs of the
probabilities of mutation (PMut.) and crossover (PCro.). m1 to m4 are 0.001, 0.01,
0.05, and 0.1, and c1-c6 are 0.01, 0.05, 0.1, 0.3, 0.5, and 0.7.
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(c) Best profits (250 items)
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(d) Average profits (250 items)
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Figure 3.10: Comparison of QEAs and CGA on the knapsack problem. The CGA is
Rep2 and its population size is 10. The vertical axis is the profit value of knapsack,
and the horizontal axis is the number of generations. The best profits and the average
profits were averaged over 30 runs.

36



3.4 Verification of the angle selection

In this section, the selection of the angle parameters for the rotation gate is ver-

ified. In Section 3.3, it was suggested to set a positive number forθ3, a negative

number forθ5, and0 for the rest of the angle parameters inΘ of Table 3.1 for the

knapsack problem. To verify this intuitive reasoning, an experiment of QEA1 on

the knapsack problem with 100 items was tried. The maximum number of genera-

tions was 1,000. The values of0, 0.005π, and−0.005π were used for each of the

eight angle parameters. That is,38 cases ofΘ were tried. Figure 3.11 shows the

experimental results carried out step by step to find proper signs(0, +,−) of the

angle parameters: (a)38 cases ofΘ, (b) 37 cases ofΘ whenθ1 was selected as0,

(c) 36 cases ofΘ when both ofθ1 andθ2 were selected as0, (d) 35 cases ofΘ when

both ofθ1 andθ2 were0, andθ3 was selected as a positive number,0.005π, (e)34

cases ofΘ when both ofθ1 andθ2 were0, θ3 was0.005π, andθ4 was selected as

0, and (f)33 cases ofΘ when both ofθ1 andθ2 were0, θ3 was0.005π, θ4 was0,

andθ5 was selected as a negative number,−0.005π. The results onθ2, θ4, θ6, and

θ8, that is, the cases in whichf(x) < f(b) is false are worthwhile to be mentioned

that the values ofθ2, θ4, θ6, andθ8 had little effect on the results as shown in Fig-

ures 3.11(b), (d), and (f), respectively. It means thatθ2, θ4, θ6, andθ8 can be set

to any one among0, 0.005π, and−0.005π. In the results on the cases in which

f(x) < f(b) is true, the values of0, 0.005π, −0.005π, and0 for θ1, θ3, θ5, and

θ7, respectively, made better solutions. From these experimental results,Θ could

be assigned as[0 ∗ p ∗ n ∗ 0 ∗]T , where∗ is one of (0, p, andn), p is a positive

number, andn is a negative number. This is consistent with the intuitive reasoning

given in Section 3.3.

Three numerical problems are considered to show that the results onΘ can

be applied to other optimization problems. To deal with numerical problems, real

values of the variables should be encoded as binary strings since QEA uses a Q-bit
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representation to generate a binary bit. The three numerical problems are as follows:

Problem 1: Maximizef1(x) = 100−(100(x2
1−x2)2+(1−x1)2), where−2.048 ≤

xi ≤ 2.048. The global maximum value is100 at (x1, x2) = (1, 1). This function

is a modified version of De Jong function (1) (see Appendix A.2).

Problem 2: Maximizef2(x) = −∑5
i=1 integer(xi), where−5.12 ≤ xi ≤ 5.12.

The global maximum value is30 for all −5.12 ≤ xi < −5.0. This function is a

modified version of De Jong function (2).

Problem 3: Maximizef3(x) = 100.98 − 1
1
K

+
P25

j=1 g−1
j (x1,x2)

, wheregj(x1, x2) =

cj +
∑2

i=1(xi − aij)6, where−65.536 ≤ xi ≤ 65.536, K = 500, cj = j, and

[aij ] =


 −32 −16 0 16 32 −32 −16 · · · 0 16 32

−32 −32 −32 −32 −32 −16 −16 · · · 32 32 32


 .

The global maximum value is100 at (x1, x2) = (−32,−32). This function is a

modified version of De Jong function (3).

Each variable was encoded as a 25-bit string. The population size was1. The

maximum number of generations was1, 000. The values of0, 0.005π, and−0.005π

were used for each of the eight angle parameters. Figures 3.12, 3.13 and 3.14 show

the results of Problems1, 2, and3, respectively, carried out step by step to find

proper signs(0, +,−) of the angle parameters. The results onθ2, θ4, θ6, andθ8,

that is, the cases whichf(x) < f(b) is false, are worthwhile to be mentioned that

the values ofθ2, θ4, θ6, andθ8 had little effect on the results as shown in (b), (d),

and (f) of Figures 3.12, 3.13 and 3.14. These are the same results of the knapsack

problem as shown in Figure 3.11. The set ofΘ for finding the maximum value of

each problem was obtained from the results as follows:

f1: [0 ∗ p ∗ 0 ∗ n ∗]T , [0 ∗ p ∗ 0 ∗ 0 ∗]T , [0 ∗ p ∗ n ∗ 0 ∗]T , [p ∗ p ∗ n ∗ 0 ∗]T ,

and[p ∗ p ∗ n ∗ n ∗]T ;

f2: [0 ∗ p ∗ n ∗ 0 ∗]T , [0 ∗ p ∗ n ∗ n ∗]T , [0 ∗ n ∗ n ∗ 0 ∗]T , [0 ∗ n ∗ n ∗ n ∗]T ,
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θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

0 0.62 ∗ 0.08 ∗ 0.13 ∗ 0.53 ∗
p 0.3 ∗ 0.75 ∗ 0 ∗ 0 ∗
n 0.08 ∗ 0.17 ∗ 0.87 ∗ 0.47 ∗

Table 3.3: Average frequencies of0, p, andn for eachθi in Θ from Problems 1, 2,
and 3. The values are scaled between0 and1.

xi bi ∆θi rec.

0 0 θ1 0
f(x) < f(b) 0 1 θ3 p

true 1 0 θ5 n
1 1 θ7 0

Table 3.4: Simplified lookup table of∆θi, wherebi andxi are theith bits of the best
solutionb and the binary solutionx, respectively.rec. means the recommended
value of∆θi. p is a positive number, andn is a negative number.

[0 ∗ 0 ∗ n ∗ 0 ∗]T , [0 ∗ 0 ∗ n ∗ n ∗]T , [n ∗ n ∗ n ∗ 0 ∗]T , and[n ∗ n ∗ n ∗ n ∗]T ;

f3: [0 ∗ p ∗ n ∗ 0 ∗]T , [0 ∗ p ∗ n ∗ n ∗]T , [p ∗ p ∗ n ∗ 0 ∗]T , and[p ∗ p ∗ n ∗ n ∗]T .

Table 3.3 shows the average frequencies of0, p, andn for eachθi in Θ from the

above results. From the table,[0 ∗ p ∗ n ∗ 0 ∗]T has a higher frequency and is

included in each set ofΘ for Problems 1, 2, and 3. It means thatΘ can be assigned

as[0 ∗ p ∗ n ∗ 0 ∗]T for other problems.

From the empirical results, Table 3.1 for the rotation gate can be simplified as

Table 3.4. It should be noted thatθ1 andθ7 can be assigned a nonzero value in

compliance with the application problems.
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Figure 3.11: Best profits of QEA1 on the knapsack problem with 100 items to find
proper signs of the angle parameters of Table 3.1. The vertical axis is the best profit
averaged over 30 runs, and the horizontal axis is the parameter settings of the angle
values.∗ could be set to0, 0.005π, and−0.005π. p andn were set to0.005π and
−0.005π, respectively.
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Figure 3.12: Results of Problem 1 to find proper signs of the angle parameters of
Table 3.1. The vertical axis is the function value off1(x) averaged over 30 runs,
and the horizontal axis is the parameter settings of the angle values.∗ could be set
to 0, 0.005π, and−0.005π. p andn were set to0.005π and−0.005π, respectively.
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Figure 3.13: Results of Problem 2 to find proper signs of the angle parameters of
Table 3.1. The vertical axis is the function value off2(x) averaged over 30 runs,
and the horizontal axis is the parameter settings of the angle values.∗ could be set
to 0, 0.005π, and−0.005π. p andn were set to0.005π and−0.005π, respectively.
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Figure 3.14: Results of Problem 3 to find proper signs of the angle parameters of
Table 3.1. The vertical axis is the function value off3(x) averaged over 30 runs,
and the horizontal axis is the parameter settings of the angle values.∗ could be set
to 0, 0.005π, and−0.005π. p andn were set to0.005π and−0.005π, respectively.
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3.5 Investigation of the characteristics

In this section, the characteristic of the proposed QEA is investigated. A simple

knapsack problem with only ten items was considered to investigate the character-

istics of QEA. Strongly correlated sets of data and the average knapsack capacity

were used as in Section 3.3. While selecting a subset from ten items, there exist

210 cases. By a simple calculation, we could obtain the profit values of 1024 cases

in the knapsack problem as shown in Figure 3.15. In this problem, the best profit

satisfying the capacity constraint was 62.192938 at the 127th. The solutions with

larger profit than the 127th one violated the capacity constraint. Now, to investigate

the characteristics of QEA, a single Q-bit individual (QEA1) was used. A rotation

gate and the parameter settings were the same as those of the experiments in Section

3.3. Figure 3.16 shows the probabilities of 1024 solutions using the Q-bit individual

at generations, 10, 20, 30, 40, 50, 100, 200, and 300. Since all the possible solutions

of the Q-bit individual are initialized with the same probability as described in (3.5),

we have a probability of 0.001 (1√
210

2 = 1
210 ) for each solution which is shown in

Figure 3.16 (a), (b), and (c) as a horizontal line. It means that QEA initially starts

with a random search.

With regard to the result at generation 10, it is worthwhile to mention that the

probabilities of 1024 solutions had a pattern similar to the profit distribution of

Figure 3.15. It means that the only one Q-bit individual was able to represent 1024

cases similarly. At generation 20, solutions with larger probability appeared. At

generation 30 to 50, the probabilities of the solutions with larger profit increased

on a large scale. At generation 100, however, all the peak values decreased except

the peaks of the better solutions. The same feature was obtained at generation 200.

At generation 300, the probability of the best solution was over 0.9, and those of

the other solutions were around 0. It means that the Q-bit individual had almost

converged to the best solution.
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Figure 3.15: Profit values of 1024 cases in the knapsack problem with ten items ob-
tained by a simple calculation. The vertical axis is the profit values of the knapsack,
and the horizontal axis is the number of 1024 cases selected as a subset from ten
items. The best profit satisfying the capacity constraint is marked with O.

The results above can be summarized in the following. Initially, QEA starts

with a random search. At generation 10, the distribution of the probabilities of

all the solutions becomes similar to the profit distribution in Figure 3.15. As the

probabilities of the solutions with larger profit increase, QEA starts a local search.

Finally, the probability of the best solution converges to1. It means that QEA

starts with a global search and changes automatically into a local search because

of its inherent probabilistic mechanism, which leads to a good balance between

exploration and exploitation.
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Figure 3.16: Probabilities of all solutions using a Q-bit individual. The vertical axis
is the probability of the solution, and the horizontal axis is the number of 1024 cases
selected as a subset from ten items.
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Figure 3.16:(Continued.)Probabilities of all solutions using a Q-bit individual. The
vertical axis is the probability of the solution, and the horizontal axis is the number
of 1024 cases selected as a subset from ten items.
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3.6 Verification of the QEA algorithm

There have been some works done based on the theoretical analysis of EAs for

certain simple functions [71, 72, 73, 74, 75, 76]. However, the theories behind these

analyses cannot be applied to the analysis of QEA, since the structure of the QEA

algorithm is quite different from any other EAs. In this section, the reason why and

how QEA works is investigated by using a simple function with two viewpoints like

its exploitation and exploration.

3.6.1 Exploitation

A theoretical model for the whole process of the QEA algorithm is hard to find,

since each state of QEA is dependent on the past history. However, if a simplified

model for a segment of the QEA process (as shown in Figure 3.17) is considered,

the abstract model can be regarded as a Markov chain.

s0 s1

p01

p00

(p10)
(p11)

e0
e1

Figure 3.17: Simplified process model for a segment of the QEA process.

The simplified model of the segment process of QEA represents the process

which is defined during the state holding periodth between thetsth generation when

the current best solution is visited and theteth (or (ts + th)th) generation when the

current best solution jumps to another better solution. In Figure 3.17,s0 is the state

which indicates the state when the current best solution is maintained, ands1 is the

state which indicates the state when the current best solution is changed to another

better solution.e0 is the event that states that the observed solution is worse than
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the current best solution, ande1 is the event that states that the observed solution is

better than the current best solution. Andpij , i, j = 0, 1, is the transition probability

from statei to statej. It should be noted thatp10 andp11 are not needed, since the

process corresponding to this model is terminated if the state is changed froms0 to

s1. The whole process of QEA can be regarded as a sequence of segment processes.

The segment process of QEA (SPQEA) is described by using Markov process

[77] as follows:

SPQEA = (E, S, Γ, p, p0) (3.8)

E = {e0, e1}, S = {s0, s1},

Γ(s0) = {e0, e1}, Γ(s1) = {},

p(s0; s0, e0) = p00, p(s1; s0, e1) = p01,

p0(s0) = 1, p0(s1) = 0,

whereE is a event set,S a state space,Γ(s) a set of feasible events defined for

all s ∈ S with Γ(s) ⊆ E, p(s′; s, e′) a state transition probability defined for all

s, s′ ∈ S, e′ ∈ E, and such thatp(s′; s, e′) = 0 for all e′ /∈ Γ(s), andp0(s) the

probability mass functionP [S0 = s], s ∈ S, of the initial stateS0.

Let us consider theONEMAX problem as follows:

ONEM AX problem: Maximize

ONEMAX(x) =
m∑

i=1

xi, (3.9)

wherexi is theith bit of x, m is the length ofx, and the global maximum value is

m atx = 111 · · · 1.

Let us suppose that all the rotation angles of the rotation gate in QEA are zeros.

Then the QEA process is the same as the process of random search. In this case,
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each solution in the search space has the same probability and its probability is

invariant all the time. It means that this process can be modelled by using only

one SPQEA withp00 = 2m−1
2m andp01 = 1

2m . The expected running number of

generations for this model is described in the following.

Theorem 3.1.The expected running number of generationsth of the random search

is

th = − log 2
log(1− p01)

, (3.10)

wherep01 is the transition probability from states0 to states1.

Proof. Let V (s) be the number of generations spent at states when it is visited.

P [V (s0) = 1] = p01

P [V (s0) = 2] = p00p01 = (1− p01)p01

P [V (s0) = 3] = p2
00p01 = (1− p01)2p01

... =
...

P [V (s0) = t] = pt−1
00 p01 = (1− p01)t−1p01

To give the expected running number of generationsth, the summation of the prob-

ability P [V (s0) = k] from k = 1 to k = th should be1
2 .

th∑

t=1

P [V (s0) = t] = 1− (1− p01)th =
1
2

∴ th = − log 2
log(1− p01)

.

Theorem 3.2.The expected running number of generationsth of the random search
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for theONEMAX problem for lengthm is

th = − log 2
log(1− 1

2m )
. (3.11)

Proof. Each solution in the search space for the random search has the same prob-

ability 1
2m and its probability is invariant all the time. Lets0 be the state when the

current best solution is one of all the possible solutions except the global maximum.

Then the transition probabilitiesp00 andp01 are 2m−1
2m and 1

2m , respectively. By

Theorem 3.1,

th = − log 2
log(1− p01)

= − log 2
log(1− 1

2m )
.

However, if the rotation angles are not zeros, the QEA process should be con-

sidered as a sequence of SPQEA models. Also, one SPQEA model should not

be considered as a homogeneous Markov chain, since the transition probability

pij is dependent on generationt. Let us consider only one segment of the QEA

process, SPQEA. The transition probability at the generationt is supposed to be

p01(t) = ξ(t)p01(t− 1), whereξ(t) is the increasing rate of the transition probabil-

ity p01(t), 0 < p01(t) ≤ 1, ξ(1) = 1, and1 < ξ(t) ¿ 1
p01(t) for t > 1, the expected

running number of generations of SPQEA can be stated as follows.

Theorem 3.3.The expected running number of generationsth of SPQEA with time-

varying transition probability can be approximated as

th ≈
log

(
1− ξ

2 + ξ−1
2p01(0)

)

log(ξ − ξp01(0))
, (3.12)

wherep01(0) is the initial transition probability from states0 to states1 andξ is a

constant satisfying
∑th

k=1 p01(k) =
∑th

k=1 ξk−1p01(0).

Proof. Let p01(t) be the transition probability froms0 to s1 andξ(t) the increasing
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rate of the transition probability at the generationt, whereξ(t) = p01(t)
p01(t−1) for t > 1

andξ(1) = 1. The probabilities for the state holding period ofs0 are

P [V (s0) = 1] = p01(1) = ξ(1)p01(0) = p01(0)

P [V (s0) = 2] = (1− p01(1)) p01(2) = (1− p01(0)) ξ(2)p01(0)

P [V (s0) = 3] = (1− p01(0))(1− ξ(2)p01(0)) ξ(3)ξ(2)p01(0)

P [V (s0) = 4] = (1− p01(0))(1− ξ(2)p01(0))(1− ξ(3)ξ(2)p01(0))×

ξ(4)ξ(3)ξ(2)p01(0)
... =

... .

Let ξ(t) be a constantξ satisfying
∑t

k=1 p01(k) =
∑t

k=1 ξk−1p01(0), the above

can be rewritten as

P [V (s0) = 1] = p01(0)

P [V (s0) = 2] = (1− p01(0)) ξp01(0)

P [V (s0) = 3] = (1− p01(0))(1− ξp01(0)) ξ2p01(0)

P [V (s0) = 4] = (1− p01(0))(1− ξp01(0))(1− ξ2p01(0)) ξ3p01(0)
... =

...

P [V (s0) = t] =
t−2∏

k=0

(1− ξkp01(0)) ξt−1p01(0).

Sinceξ can be considered as
(
1 + δ

p01(0)

)
, where0 < δ ¿ p01(0), P [V (s0) = t]

can be approximated as

P [V (s0) = t] ≈ (1− p01(0))t−1 ξt−1p01(0).

To give the expected running number of generationsth, the summation of the prob-

ability P [V (s0) = k] from k = 1 to k = th should be1
2 . Therefore, the expected
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Figure 3.18: Comparison of the expected running number of generations (th) with
respect to the initial transition probability (p01(0)) between QEA (ξ = 1.01 and
1.2) and random search (ξ = 1.0). ξ is the increasing rate of (3.12). A logarithmic
(base 10) scale is used for the horizontal and vertical axes.

running number of generations of SPQEA is obtained as

th∑

t=1

P [V (s0) = t] ≈ p01(0)
1− (1− p01)thξth

1− (1− p01)ξ
=

1
2

∴ th ≈
log

(
1− ξ

2 + ξ−1
2p01(0)

)

log(ξ − ξp01(0))
.

It should be noted that ifξ is 1, th of (3.12) remains same as that of (3.10) for

random search. Figure 3.18 shows the expected running number of generationsth

with respect to the initial transition probabilityp01(0). In the case of random search

(ξ = 1.0), if p01(0) is small,th is very large, e.g.th|p01(0)=1.0×10−13 = 6.9× 1012

at ξ = 1.0. However, for the cases of QEA (ξ = 1.01 and 1.2), the expected

running number of generations is much smaller than that of random search, e.g.

th|p01(0)=1.0×10−13 = 2, 475 at ξ = 1.01 and151 at ξ = 1.2.

Let us consider theONEMAX problem for lengthm, wherem = 4. If the

initial states0 has the current best solution of1100, the transition probability is
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t = 1 t = 2 t = 3
x0 p01(1) ξ(1) x1 p01(2) ξ(2) x2 p01(3) ξ(3)

0000 0.4590 1.1923
0001 0.4168 1.0828

0000 0.3849 1.2318 0010 0.4168 1.0828
0100 0.4209 1.0935
1000 0.4209 1.0935
0000 0.4168 1.2052
0001 0.3761 1.0876

0001 0.3458 1.1067 0010 0.3743 1.0824
0100 0.3801 1.0991
1000 0.3801 1.0991
0000 0.4168 1.2052
0001 0.3743 1.0824

1100 0.3125 1.0 0010 0.3458 1.1067 0010 0.3761 1.0876
0100 0.3801 1.0991
1000 0.3801 1.0991
0000 0.4209 1.2109
0001 0.3801 1.0934

0100 0.3476 1.1124 0010 0.3801 1.0934
0100 0.3815 1.0974
1000 0.3849 1.1073
0000 0.4209 1.2109
0001 0.3801 1.0934

1000 0.3476 1.1124 0010 0.3801 1.0934
0100 0.3849 1.1073
1000 0.3815 1.0974

Table 3.5: Simulation results for the verification of the increasing rateξ by a simple
calculation for theONEMAX problem for lengthm, wherem = 4. t is the time step
(or generation),xt the observed solution att, p01(t) the transition probability from
s0 to s1, andξ(t) the increasing ratep01(t)

p01(t−1) . p01(t) was obtained by the sum of
P [Xt = 1111], P [Xt = 1110], P [Xt = 1101], P [Xt = 1011], andP [Xt = 0111].
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p01(0) = 5
2m = 0.3125, since all the solutions have the same probability1

2m at

t = 0 and there are five solutions, such as 1111, 1110, 1101, 1011, and 0111, better

than1100. Table 3.5 shows the simulation results of all the possible situations from

t = 1 to t = 3 to verify the value of the increasing rateξ(t). The rotation angle

of p (or |n|) for the rotation gate was set to0.03π in this simple calculation. This

table shows that the values ofξ(t) are greater than 1 in all the possible situations. It

means that the probability at which the better solution is to be found increases each

generation and the better solution can be found in a shorter span of time as shown

in (3.12).

Figure 3.19 shows the experimental results of QEA for theONEMAX problem

for lengthm, wherem = 16. In Figure 3.19 (a), the dotted line gives a reference

for finding a properξ which can provide an upper bound of the expected running

number of generations for each segment process. If the segment processes of QEA

are modelled by SPQEA, the expected running numbers of generations of (3.12)

with values ofξ = 1.09, 1.1, and 1.09 can provide the upper bound for those of the

2nd, 3rd, and 4th segment processes of QEA, respectively.

It should be noted that the increasing rateξ(t) of the transition probability was

greater than 1 in the results of Table 3.5 and Figure 3.19. Also, the statement that

ξ(t) is always greater than 1 for theONEMAX problem for lengthm can be verified

by a simple calculation.

Theorem 3.4. The expected number of Q-bits toward the state 1 for theONEMAX

problem is a positive value in SPQEA.

Proof. Let m be the binary string length andn1 the number of ones for the current

best solution. If the number of ones for the observed binary solution isk, where

k < n1, the number of Q-bits toward the state 1 is(n1−k) and the number of binary

solutions which havek ones is m!
k!(m−k)! . Since the number of all the possible binary

solutions in SPQEA is
∑n1−1

k=0
m!

k!(m−k)! , the expected number of Q-bits toward the
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state 1 for theONEMAX problem for lengthm is a positive value:

∑n1−1
k=0

(
m!

k!(m−k)!(n1 − k)
)

∑n1−1
k=0

m!
k!(m−k)!

> 0. (3.13)

In other words, QEA for theONEMAX problem has the tendency of converging

to better solutions in a short span of time. The reason can be explained by the

concept of building block which is a small, tightly clustered group of genes [78]. In

the case of theONEMAX problem, the group of ones for the current best solution

can be regarded as a building block and the probability of this building block is

increased by the rotation gate. As a consequence, the probabilities of the better

solutions increase.

It is worthwhile to mention that a sequence of SPQEA for theONEMAX prob-

lem guarantees the global solution in terms of expected running number of genera-

tions, since the number of better solutions always decreases after one sequence of

SPQEA and it eventually becomes 1 to be considered as the only global solution.

3.6.2 Exploration

To increase the performance of EAs for various optimization problems, explo-

ration as well as exploitation discussed earlier should be considered. The global

optimum for a unimodal function which has no local optimum can be exploited

without exploration. However, if an EA has no scheme for exploration, the global

optimum for a multimodal function which has many local optima is not guaranteed

to be found out.

To verify the strategy of exploration for QEA, Shannon entropy [79] can be

considered as a measure of the amount of information included in a Q-bit individual.
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The entropy ofp(x), x ∈ X, is described as

I(p(x)) = −p(x) log2 p(x),

whereX is a search space,I(·) the entropy (or information) of the probability, and

p(x) the probability ofx, i.e. P [X = x]. The entropy of the probability distribution

for the search space represented by a Q-bit individual is driven to be

I(p(x)|x ∈ X) = −
∑

x∈X
p(x) log2 p(x), (3.14)

where

p(x) =
m∏

i=1

pi

with

pi =




|αi|2, if xi = 0

|βi|2, if xi = 1
,

wherexi is theith bit of x and(αi, βi) is theith Q-bit. It should be noted that the

entropy initially has the maximum value ofm and it decreases gradually, since each

probability ofp(x), x ∈ X, is shifted with a small amount by the rotation gate as

generation advances.

For comparison purpose, let us consider(1 + 1) GA with mutation rate 1
m ,

wherem is the length of binary solution. Crossover operator cannot be used, since

the population size is 1.

Definition 3.6. A Hamming distanceH of the two binary strings,x1 andx2, is
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defined as the number of their bitwise-different bits, which is defined as

H(x1,x2) =
m∑

i=1

|x1i − x2i|

wherem is the binary string length.

Theorem 3.5. The entropy of the probability distribution for the search space rep-

resented by(1 + 1) GA is a constant regardless of the generationt for t > 0.

Proof. Let x be the current binary solution,x′ the next binary solution, andh the

Hamming distance betweenx andx′. If x′ with Hamming distanceh from x is xh,

the probability ofxh can be described as

p(xh) =
(

m− 1
m

)m−h (
1
m

)h

,

and the number of all the possiblexh is

n(xh) =
m!

h!(m− h)!
.

The entropy of the probability distribution for the search space is obtained as

I(p(x)|x ∈ X) = −
∑

x∈X
p(x) log2 p(x)

= −
m∑

h=0

(
n(xh)p(xh) log2 p(xh)

)
. (3.15)

Therefore, the entropy of the probability distribution for the search space repre-

sented by(1+1) GA is a constant regardless of the generationt as shown in (3.15).

Let us also consider a simulated annealing (SA) method which is a specific

version for binary representation (see Appendix B.1).

Theorem 3.6. The entropy of the probability distribution for the search space rep-
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Figure 3.20: Comparison of the entropy of the probability distribution for the search
space with respect to the time step (or generation) among QEA1,(1 + 1) GA, SA,
and the random search. The results were obtained from theONEMAX problem for
lengthm, wherem = 16.

resented by SA with binary representation is a constant regardless of the time stept

for t > 0.

Proof. Letx be the current binary solution,x′ the next solution, andh the Hamming

distance betweenx andx′. Then the distanceh is always1 for SA with binary

representation. If the length of binary string ism, the number of all the possiblex1

is m and the probability ofx1 is 1
m . Sincep(xh) is 0 for all h excludingh = 1, the

entropy of the probability distribution for the search space is obtained as

I(p(x)|x ∈ X) = −
∑

x∈X
p(x) log2 p(x)

= − log2

1
m

. (3.16)

Therefore, the entropy of the probability distribution for the search space repre-

sented by SA with binary representation is a constant regardless of the time stept
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as shown in (3.16).

Figure 3.20 shows the differences of the entropy of the probability distribution

for the search space among QEA1,(1 + 1) GA, SA, and the random search. While

the entropy values for(1 + 1) GA, SA, and the random search are constant values

of (3.15), (3.16), andm, respectively, that of QEA1 is not a constant. The entropy

value of QEA1 is initially the same as that of the random search, and it decreases

gradually as generation advances. This result shows clearly that the strategy of

QEA for exploration differs from those of(1 + 1) GA and SA. It is hard to say that

which strategy is the superior one compared to others, since the performance of the

strategy may depend on the specific problems. However, it is clear that QEA starts

with a global search scheme and changes automatically into a local search scheme

as generation advances because of its inherent probabilistic mechanism, that leads

to a good balance between exploration and exploitation as already mentioned in

Section 3.5.

3.7 Termination criteria

To decide the appropriate termination of QEA, a proper termination condition

is necessary. Although the maximum number of generations is a generally used

termination criterion in evolutionary algorithms, in QEA the probability of the best

solution can be employed as a termination criterion because of the probability rep-

resentation. The termination condition can be designed by using the average proba-

bility of the best solutionb as follows:

Prob(b) =
1
n

n∑

j=1

(
m∏

i=1

pji

)
(3.17)
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γ0 0.001 0.01 0.1 0.8 0.9

best 3031.2 3036.2 3031.3 3031.3 3036.3
mean 3008.0 3014.3 3019.0 3018.0 3020.3

500 worst 2980.7 2991.1 3006.3 3006.3 3001.3
σ 12.571 9.798 6.548 6.993 7.895
t 905 1045 1240 1896 3071

Table 3.6: Experimental results of the knapsack problem with 500 items to show the
effects of changingγ0 for the termination condition (3.18). The population size was
12, the global migration period 100, the local group size 3, and the number of runs
30. σ andt represent the standard deviation and the average number of generations,
respectively.

with

pji =




|αji|2, if bi = 0

|βji|2, if bi = 1
,

wherebi is theith bit of the best solutionb and(αji, βji) the ith Q-bit of thejth

Q-bit individual. The termination condition hence is defined as

Prob(b) > γ0, (3.18)

where0 < γ0 < 1. The probabilityProb(b) represents the average convergence

of all the Q-bit individuals to the best solution. It must be a substantial termina-

tion criterion of QEA. However, since the probability is sensitive to each Q-bit’s

probability, it is not easy to set the valueγ0. The slight difference ofγ0 can in-

crease the processing time for a particular problem. Table 3.6 shows the effects of

changing the valueγ0. From the table, ifγ0 ≥ 0.1, all the results were almost the

same. However, the generation number atγ0 = 0.9 was about 2.5 times of that at

γ0 = 0.1.

To design a new termination criterion regardless of the sensitivity, a measure of
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γ 0.9 0.95 0.99

best 2979.5 3016.2 3031.3
mean 2949.5 2993.9 3020.1

500 worst 2905.9 2960.7 3001.3
σ 20.372 14.295 7.681
t 484 722 1164

Table 3.7: Results on changingγ for the termination criterion (3.19). The parameter
settings were the same as in Table 3.6.σ andt represent the standard deviation and
the average number of generations, respectively.

the convergence of Q-bit individual is defined.

Definition 3.7. Q-bit convergenceCb is defined to be the convergence measure of a

Q-bit individual in QEA as

Cb(q) =
1
m

m∑

i=1

∣∣1− 2|αi|2
∣∣

or

Cb(q) =
1
m

m∑

i=1

∣∣1− 2|βi|2
∣∣ ,

whereq is a Q-bit individual, and(αi, βi) is its ith Q-bit.

Using the Q-bit convergence, the following termination criterion can be de-

signed:

Cav =


 1

n

n∑

j=1

Cb(qj)


 > γ, (3.19)

whereCb(qj) is the Q-bit convergence of thejth Q-bit individual. The termination

criterion of (3.19) is shown to be regardless of the best solutionb. However, the

average convergence of all the Q-bit individuals can represent the processing status

of QEA properly, and it gives a clearer meaning on how much each Q-bit converges

to 0 or 1 on an average. Consequently, users can more systematically set the ter-
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Figure 3.21: Difference between the two measures of (3.18) and (3.19) for termina-
tion criteria. A logarithmic (base 10) scale is used for the vertical axis of (a).
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mination condition. For example, ifCav is 0.99, it means that99% of the Q-bits

converge to the true value (0 or 1) on an average. Table 3.7 shows the results on

changing the valueγ.

Figures 3.21 (a) and (b) show the difference between the two measures of (3.18)

and (3.19) for termination criteria. In Figure 3.21 (b), it should be noted that the

Q-bit convergence provides an easier understanding of the Q-bit individuals’ con-

vergence.

It is worthwhile to mention that if a faster termination is needed, the following

maximum Q-bit convergenceCmax can be used:

Cmax =
(

n
max
j=1

Cb(qj)
)

> γ. (3.20)

3.8 Effects of different parametric settings

In this section, the effects of changing parameters (such as the population size,

the global and local migration periods, the rotation angles, and the number of ob-

servations) of QEA are investigated.

3.8.1 Population size

To investigate the effects of changing the population size of QEA, the knapsack

problem with 500 items considered in Section 3.3 was used. The population size

was tested from 1 to 100. The rotation gate was used for Q-gate. The values of

0.01π, −0.01π, and0 were used forθ3, θ5, and the rest ofΘ, respectively. The

global migration period in generation was 100, and the local migration period was

1. The local group sizeng was set as

ng = max
(
integer

(n

5

)
, 1

)
, (3.21)
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wheren is the population size. For the comparison purpose, the conventional GA

(CGA) which outperformed all other CGAs in Section 3.3 was tested. The values

of 0.001 and 0.7 for the mutation and crossover probabilities, respectively, were

selected for CGA (Rep2). The maximum number of generations was 1,000.

Figure 3.22 shows the results on the effects of changing the population sizes

of QEA and CGA. In Figure 3.22 (a) and (b), the profits increased fast until the

population size was 10-20, however the increasing rate was nearly constant after

the population size reached 30. The tendency of the results on QEA was similar

to that of CGA. However, it should be noted that the best and average profits of

QEA with population size 2 were better than those of CGA with population size

100 (according to (d), the convergence speed of QEA with population size 2 was

29 times faster than that of CGA with population size 100). In Figure 3.22 (c),

it is also worthwhile to mention that the standard deviation of the best profits of

QEA over 30 runs decreased as population size increased. It means that the larger

population size could provide better robustness for QEA. However, this relation

between population size and robustness did not appear in the result of CGA after

the population size reached 20. The processing time of QEA was about 2 times of

the CGA’s for the same population size. This is because QEA uses Q-bit individuals

as a population. Q-bit individuals need floating point calculations to represent the

corresponding probabilities. However, it should be noted that the processing time

of QEA was proportional to the population sizen, which is the same as CGA’s.

3.8.2 Global and local migrations

The performance of QEA with a few individuals was already verified in the

previous results. It means that QEA can be easily extended to a parallel scheme

as proposed in the structure of QEA. Since the parallel scheme can increase the

population diversity, it helps QEA to explore the search space effectively.
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Figure 3.22: Effects of changing the population sizes of QEA and CGA for the
knapsack problem with 500 items. The global migration period and the local mi-
gration period were 100 and 1, respectively. The local group size was set as (3.21).
The results were averaged over 30 runs.
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Figure 3.23: Effects of changing the global migration period in QEAs with and
without local migration for the knapsack problem with 500 items. The global mi-
gration periodTglobal was set to the values ranging from 1 to 300. For the QEA with
local migration, the period was 1 and the local group size was set as (3.21). The
profits were averaged over 30 runs.
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Figure 3.24: Relations between migration and Q-bit convergence for the knapsack
problem with 500 items. The population size was 30. The global migration periods
of (b), (c), and (d) were 1, 40, and 120, respectively. The local group sizes of (b),
(c), and (d) were 1, 1, and 6, respectively.
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To show the effects of changing the global migration period, the same knapsack

problem with 500 items was considered. The population sizes of 10, 30, and 50

were tested. The maximum number of generations was 1,000. To investigate the

effects of using the local migration, QEAs with local migration and without local

migration were considered for each population size. Figure 3.23 shows the effects

of changing the global migration period in QEAs with and without local migration.

The local group size of QEA with local migration was set to be the same as (3.21).

In the results of QEA without local migration, an undershooting point at near 40

was found, since the increasing diversity from the global migration disturbed the

convergence of homogeneous individuals. In the results of QEA with local migra-

tion, the undershooting point disappeared. This is because the local migration with

period 1 guaranteed the convergence of homogeneous individuals in the same local

group. From these results, we can say that it is desirable that the local migration

period be set to 1 to guarantee the convergence of homogeneous individuals. It is

also worthwhile to mention that the best results were found at the global migration

period between 100 and 150, although the migration period could be affected by

other parameters. Consequently, the global migration period should be set properly

considering the convergence period of the local groups.

Figure 3.24 shows the relations between migration and Q-bit convergence. While

the profits of the point A (Figure 3.24 (b)) increased continuously without pertur-

bation, those of the point B (Figure 3.24 (c)) and the point C (Figure 3.24 (d))

increased with perturbation. The perturbation was caused by the global migration.

The difference of the perturbation level between the points B and C can be explained

by using the concept of Hamming distance. When a new best solution comes from

the neighbor local group through the global migration:

i) if the new best solution has a large Hamming distance from the current best

solution, the Q-bit individual varies largely to adapt the new one;

70



ii) if the new best solution has a small Hamming distance from the current best

solution, the Q-bit individual changes a little. In this case, the Q-bit individual

has a chance to have a premature convergence to a local optimum.

3.8.3 Rotation angles

In the previous empirical results, the best results on the knapsack problem with

500 items were found at the global migration period between 100 and 150. And

the rotation angle ofp (or |n|) was set to0.01π. However, if the rotation angle is

changed, the global migration period for inducing the best result may be changed.

If the value of rotation angle is smaller, the global migration period must be larger,

since the convergence speed is changed to be slower.

Here, to investigate the effects of changing the rotation angles, the knapsack

problems with 500, 600, and 700 items were considered. The population size and

the local group size were set to 30 and 6, respectively. The local migration period

was set to 1. The termination condition of (3.19) was used instead ofMAX GEN and

the value ofγ was set to0.99.

Figure 3.25 (a) shows the effects of changing the value of rotation angle ranging

from 0.005π to 0.05π. As shown in this figure, it should be noted that there was a

peak value of the mean best profits for the same rotation angleδθ. And the value

of global migration period for the peak was larger as the value of rotation angle

was smaller. Figure 3.25 (b) shows the relation between the rotation angle and

the global migration period for each peak. And it shows that the rotation angle is

inversely proportional to the global migration period. The result was approximately

the same as

Tg =
1.15π

δθ
+ 10. (3.22)

Also, the running number of generations where the algorithm is terminated by the
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termination condition forγ = 0.99 was approximately the same as

t0.99 =
9.0π

δθ
+ 80. (3.23)

Figures 3.26 and 3.27 show the similar results in the relations among the rotation

angle, the global migration period, and the running number of generations to those

of Figures 3.25.

Consequently, the relation between the rotation angle and the global migration

can be approximated as

Tg =
λg

δθ
+ kg, (3.24)

whereλg > 0 andkg > 0. The relation between the rotation angle and the running

number of generations can be also approximated as

tγ =
λγ

δθ
+ kγ , (3.25)

whereλγ > 0 andkγ > 0.

It is worthwhile to mention thatkg of (3.24) andkγ of (3.25) are nonzero values,

since each Q-bit is not updated when the current best solution is changed to the

current observed solution in the update procedure. As the result of the knapsack

problem with 500 items for checking how many times the current best solution

changes during the running number of generations, the best solutionb was changed

about 80 times and the best solutionbj for each individual was changed about 10

times, where the rotation angle and the global migration period were set to0.01π

and 100, respectively.
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Figure 3.25: Effects of changing the rotation angles for the knapsack problem with
500 items. The global migration period was set to the values ranging from 1 to 300.
The population size and the local group size were set to 30 and 6, respectively. The
termination condition of (3.19) was used and the value ofγ was set to0.99. All
the results were averaged over 30 runs.δθ is the rotation angle ofp (or |n|), Tg the
global migration period, andt0.99 the number of generations where the algorithm
is terminated by the termination condition forγ = 0.99. The dotted line of (b) is
Tg = 1.15π

δθ
+ 10 and that of (c) ist0.99 = 9.0π

δθ
+ 80.
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Figure 3.26: Effects of changing the rotation angles for the knapsack problem with
600 items. The global migration period was set to the values ranging from 1 to 300.
The population size and the local group size were set to 30 and 6, respectively. The
termination condition of (3.19) was used and the value ofγ was set to0.99. All
the results were averaged over 30 runs.δθ is the rotation angle ofp (or |n|), Tg the
global migration period, andt0.99 the number of generations where the algorithm
is terminated by the termination condition forγ = 0.99. The dotted line of (b) is
Tg = 1.2π

δθ
+ 10 and that of (c) ist0.99 = 9.8π

δθ
+ 80.
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Figure 3.27: Effects of changing the rotation angles for the knapsack problem with
700 items. The global migration period was set to the values ranging from 1 to 300.
The population size and the local group size were set to 30 and 6, respectively. The
termination condition of (3.19) was used and the value ofγ was set to0.99. All
the results were averaged over 30 runs.δθ is the rotation angle ofp (or |n|), Tg the
global migration period, andt0.99 the number of generations where the algorithm
is terminated by the termination condition forγ = 0.99. The dotted line of (b) is
Tg = 1.34π

δθ
+ 10 and that of (c) ist0.99 = 10.7π

δθ
+ 80.
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Figure 3.28: Relations between the multiple observations and the global migration
period for the knapsack problem with 500 items. The global migration period was
set to the values ranging from 1 to 300. The numbers of observationsNob were 1,
3, 5, and 10, respectively. The profits were averaged over 30 runs.

3.8.4 Multiple observations

In QEA, the observation process of a Q-bit individual provides a binary string.

Since the Q-bit individual includes many binary strings, instead of the Q-bit indi-

vidual, the binary string from it is evaluated to give its fitness level. To represent the

Q-bit individual, several binary strings can be obtained by multiple observations. In

this case, we can guess that multiple observations are related to the convergence of

QEA.

To investigate the relations between the number of observations and the perfor-

mance of QEA, the knapsack problem with 500 items was considered. The popula-

tion size, the global migration period, and the local group size were set to 10, 100,

and 2, respectively.

Figure 3.28 shows the relations between the multiple observations and the global

migration period. The global migration period was set to the values ranging from 1

to 300. The numbers of observations were 1, 3, 5, and 10. From this result, it should

be noted that the multiple observations increased the performance and decreased the
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sensitivity of the global migration period although the profits were almost the same

at Nob = 3, 5, and 10. However, there is no doubt that the multiple observations

increase the processing time. If the complexity of the problem is not high, it is

recommended to set the value to 1.

3.9 Summary

In this chapter, a novel QEA, inspired by the concept of quantum computing,

was proposed. A Q-bit individual was defined as a string of Q-bits for the proba-

bilistic representation. To introduce the variation to the Q-bit individual, a Q-gate

was designed as a variation operator. The proposed QEA is characterized by the Q-

bit representation for the population diversity, the observation process for producing

a binary string from the Q-bit individual, the update process for driving the individ-

uals toward better solutions by the Q-gate, the migration process for more variation

of the probabilities of the Q-bit individuals, and the termination condition which

can be given by the convergence of the Q-bit individuals. The effectiveness and

applicability of QEA were verified by the theoretical analysis of the QEA algorithm

as well as the experimental results on several optimization problems.
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4. QEA Issues

In this chapter, the structure of QEA is extended for the improvement in its

performance. In an attempt to do so, the following issues are addressed: i) the

effects of changing the initial values of Q-bits since the initial values can influence

the performance of QEA (Note that in the standard QEA, the initial Q-bit is set

to
(

1√
2
, 1√

2

)
for the uniform distribution of states 0 and 1), ii) a novel variation

operatorHε gate to provide an attempt to escape effectively from local optima, and

iii) a two-phase scheme from the analysis of i).

4.1 Effects of changing the initial values of Q-bits

In the ‘initializeQ(t)’ step of Figure 3.1, all Q-bits are initialized with
(

1√
2
, 1√

2

)

to represent a linear superposition of all the possible solutions with the same prob-

ability. It means that we have no information about the search space. Here, let us

assume that we have a little bit of information about the search space to be explored.

Then, we can see that the prior knowledge can be easily put into the initial values of

Q-bits.

For instance, let us consider the knapsack problem with 500 items, which does

not have an average knapsack capacity as a constraint, but a restrictive knapsack

capacity ofC = 2v, wherev = 10. In this case, the optimal solution contains very

few items. An infeasible search space, where the constraint is not satisfied, occupies

almost the whole search space. For this type of knapsack problem, we already have

some prior knowledge like “the optimal solution contains very few items.” From
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(α2
i , β

2
i ) (0.99, 0.01) (0.5, 0.5) (0.01, 0.99)

b. 94.993 94.856 94.892
m. 86.973 81.978 80.969

500 w. 79.942 69.983 69.996
σ 3.774 5.846 5.662
t 697 4682 8231

Table 4.1: Experimental results of the knapsack problem with 500 items to show
the effects of changing the initial values of Q-bits. The population size was 15, the
global migration period 100, the local group size 3, and the number of runs 30. The
termination condition of (3.19) was used withγ = 0.99. b., m., andw. meanbest,
mean, andworst, respectively.σ and t represent the standard deviation and the
average number of generations, respectively.

this prior knowledge, we can set the initial value of each Q-bit to
(√

1− β2
i , βi

)
,

whereβi is a small value close to zero.

Table 4.1 shows the experimental results of the knapsack problem with 500

items using the knapsack capacity to be restricted toC = 20. The table shows

that the results are highly dependent on the initial values of Q-bits. The results of

(0.99, 0.01) are the best and also its average number of generations is the smallest

one. More specifically, the convergence speed of(0.99, 0.01) is 6.7 and 11.8 times

faster than those of(0.5, 0.5) and(0.01, 0.99), respectively. In addition to that, the

average standard deviation of(0.99, 0.01) over 30 runs is the best one.

The results of Table 4.1 agree with our prediction through the prior knowledge.

It can be explained by the relation between the initial search space and the optimal

solution. If the initial search space is formed near the optimal solution, the solution

can be searched in a short span of time. To measure the distance between the initial

search space and the optimal solution, ones-number distance, defined below, can be

considered.

Definition 4.1. A ones-number distance, Dn, of the two binary strings,x1 andx2,
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is defined as the difference between their numbers of ones, which is defined as

Dn(x1,x2) = |ones(x1)− ones(x2)| ,

where the functionones(x) returns the number of ones in the binary stringx.

The distribution of the ones-number distance between the initial search space

and the optimal solution can be obtained, since the initial search space determined

by each value of Q-bit has a distribution with respect to ones number.

Figure 4.1 shows the differences of the initial search spaces with respect to the

initial values of Q-bits. In the case of (e), the distribution of the initial search space

is nearly a random noise. It indicates that the initial search starts randomly. In

the cases of (a)-(d), the points which include less ones have higher probabilities.

On the other hand, in the cases of (f)-(i), the points which include more ones have

higher probabilities. It means that the initial search space can be formed effectively

by changing the initial values of Q-bits. It is worthwhile to mention that the initial

search space is distributed globally, although the distribution spreads to the space in-

cluding more (or less) ones depending on Q-bit values. For instance, let us consider

7-bit strings with 1 for the number of ones. There are 7 strings of which number

of ones is 1. Their integer numbers are 1, 2, 4, 8, 16, 32, and 64, respectively. It

indicates that the solutions which have the same number of ones spread widely in

the search space. The reason why the initial search space represented by the initial

values of Q-bits is distributed globally can be explained by this characteristics of

binary coding.

Figure 4.2 shows the differences of the initial search spaces with respect to the

initial values of Q-bits, when gray coding is used to convert binary string to integer

value.

Figure 4.3 shows the observed frequency of each solution with respect to the

number of ones by observing each Q-bit individual105 times. The results show
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Figure 4.1: Differences in the initial search spaces with respect to the initial values
of Q-bits. The size of the search space is214 (7 bits for each x and y). Each pair
of values in parenthesis represents(α2

i , β
2
i ). On the(x, y) plane, the darker points

have a higher probability to be present in the initial search space. The probabilities
were obtained by observing each Q-bit individual105 times.
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Figure 4.2: Differences in the initial search spaces with respect to the initial values
of Q-bits. The size of the search space is214 (7 bits for each x and y). Each pair of
values in parenthesis represents(α2

i , β
2
i ). On the(x, y) plane, the darker points have

a higher probability to be present in the initial search space. The probabilities were
obtained by observing each Q-bit individual105 times. In particular, gray coding
was used to convert from binary string to integer value.
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(b) (0.65, 0.35)
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Figure 4.3: Observed frequency of each solution with respect to the number of ones
by observing each Q-bit individual105 times. Each pair of values in parenthesis
represents(α2

i , β
2
i ). The size of the search space is214 (7 bits for each x and y). A

logarithmic (base 10) scale is used for the vertical axis.
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clearly that the initial search space can be formed effectively by changing the initial

values of Q-bits. The frequencies were scaled by using the following equation:

fs(n1) =
fo(n1)/No

m!
n1!(m−n1)!/2m

=
fo(n1)/105

14!
n1!(14−n1)!/214

, (4.1)

wheren1 is the number of ones,fs the scaled frequency,fo the observed frequency,

No the total number of observations, andm the length of binary solution. The value

of m!
n1!(m−n1)! represents the number of solutions includingn1 ones among the whole

solutions.

4.2 Hε gate

The rotation gate used as a Q-gate induces the convergence of each Q-bit to

either 0 or 1. However, a Q-bit converged to either 0 or 1 cannot escape the state

by itself, although it can be changed passively by a global or local migration. If

the value of|β|2 is 0 (or 1), the observing state of the Q-bit is always 0 (or 1). To

prevent the premature convergence of Q-bit,Hε gate is defined as a Q-gate.

Definition 4.2. An Hε gateis defined as a Q-gate extended from the rotation gate:

[α′i β′i]
T = Hε(αi, βi, ∆θi), (4.2)

where, for[α′′i β′′i ]T = R(∆θi)[αi βi]T ,

i) if |α′′i |2 ≤ ε and|β′′i |2 ≥ 1− ε,

[α′i β′i]
T = [

√
ε
√

1− ε]T ;

ii) if |α′′i |2 ≥ 1− ε and|β′′i |2 ≤ ε,

[α′i β′i]
T = [

√
1− ε

√
ε]T ;
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Figure 4.4:Hε gate based on the rotation gate.

iii) otherwise,

[α′i β′i]
T = [α′′i β′′i ]T ,

where0 < ε ¿ 1, R(∆θi) is the rotation gate, and∆θi, i = 1, 2, · · · ,m, is the

rotation angle of each Q-bit toward either0 or 1 state, depending on its sign.

Figure 4.4 shows theHε gate, wherelimε→0 Hε(·) is the same as the rotation

gate. While the rotation gate makes the probability of|α|2 or |β|2 converge to either

0 or 1,Hε gate makes it converge toε or (1 − ε). It should be noted that ifε is too

big, the convergence tendency of a Q-bit individual may disappear.

Theorem 4.1. The entropy of the probability distribution for the search space rep-

resented by Q-bit individual withHε gate converges to

−
m∑

h=0

(
m!

h!(m− h)!
εm−h(1− ε)h

(
log2

(
εm−h(1− ε)h

)))
, (4.3)

wherem is the length of Q-bit individual.
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Proof. Let x be the converged binary solution andxh the binary solution with

Hamming distanceh from x. Each Q-bit converges to either(
√

ε,
√

1− ε) or

(
√

1− ε,
√

ε) in any case. For clarification purpose, let us consider one simple

case, where all Q-bits corresponding tox converge to(α, β) = (
√

ε,
√

1− ε). Then

the probability ofxh is described as

p(xh) = εm−h(1− ε)h,

and the number of all the possiblexh is

n(xh) =
m!

h!(m− h)!
.

Therefore, the entropy of the probability distribution for the search space repre-

sented by the Q-bit individual withHε gate is obtained as

I(p(x)|x ∈ X) = −
∑

x∈X
p(x) log2 p(x)

= −
m∑

h=0

(
n(xh)p(xh) log2 p(xh)

)

= −
m∑

h=0

(
m!

h!(m− h)!
εm−h(1− ε)h

(
log2

(
εm−h(1− ε)h

)))
.

Figure 4.5 shows the differences of the entropy of the probability distribution for

the search space among QEA1s withHε gates forε = 0, 0.01, and 0.05, respectively.

From the results for theONEMAX problem of (3.9), it should be noted that the

entropy converges to the larger value asε is bigger. However, ifε is too big, the

mechanism for exploitation may not work.

If Hε gate is used as a Q-gate, the termination conditions of (3.19) and (3.20)
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Figure 4.5: Comparison of the entropy of the probability distribution for the search
space among QEA1s withHε gates forε = 0, 0.01, and 0.05, respectively. All the
results were averaged over 30 runs for theONEMAX problem for lengthm, where
m = 16.

should be modified as

Cav =


 1

n

n∑

j=1

Cb(qj)


 > (1− 2ε)γ (4.4)

and

Cmax =
(

n
max
j=1

Cb(qj)
)

> (1− 2ε)γ, (4.5)

respectively. To increase the period for fine tuning caused by theε boundary, the

mixed termination condition can be also used as follows:

MAX GEN = τtγ , (4.6)

wheretγ is the number of generations when the termination condition withγ of

(4.4) or (4.5) is satisfied andτ > 1.
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ε 0 0.005 0.01 0.015 0.02 0.03

b. 1677.9 3.8× 10−4 3.8× 10−4 2.6× 10−3 0.2841 500.90
m. 2467.5 31.583 4.2× 10−4 7.9145 67.980 1046.6

f w. 3624.3 236.87 7.5× 10−4 118.45 475.05 1763.1
σ 503.83 60.649 7.2× 10−5 29.541 104.58 343.73
t 4567.5 7183.9 8817.2 7364.0 6207.0 2903.2

Table 4.2: Experimental results of the Schwefel function to show the effects of
changingε for Hε gate. The population size was 15, the global migration period
100, the local group size 3, the number of observations 3, and the number of runs
30. γ of (4.4) was set to 0.9999.b., m., andw. meanbest, mean, andworst,
respectively.σ and t represent the standard deviation and the average number of
generations, respectively.

To investigate the performance ofHε gate, Schwefel function (see Appendix

A.2) is considered. Table 4.2 shows the effects of changingε for theHε gate. As

shown in the table, the results forε = 0.01 were the best for the Schwefel function,

although the average number of generations was larger than other results. It should

be noted that ifε is too big, the performance would be worse than that of QEA with

the rotation gate (ε = 0). While a largeε (= 0.03) induces a fast premature conver-

gence, a properly selected-small value ofε (= 0.01) provides better solutions. In

particular,Hε gate is recommended for a class of numerical optimization problems

which have many local optima.

4.3 Two-phase scheme

We have already verified that changing the initial values of Q-bits can provide

better performance of QEA. The initial values of Q-bits are directly connected to

the initial search space as shown in Figure 4.1. If the initial values of Q-bits can be

found to represent the initial search space with small distance to the best solution,

the Q-bit individuals can converge to the best solution effectively. To put this idea

to the algorithm, two-phase QEA (TPQEA) scheme is proposed in the following.
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Procedure TPQEA
begin

First-phase QEA
Second-phase QEA

end

Figure 4.6: Procedure TPQEA.

Procedure first-phase QEA (phase I)
begin

t ← 0
initialize Q(t)
makeP (t) by observing the states ofQ(t)
evaluateP (t)
store the best solutions amongP (t) into B(t)
while (not termination condition)do
begin

t ← t + 1
makeP (t) by observing the states ofQ(t− 1)
evaluateP (t)
updateQ(t) using Q-gates
store the best solutions amongB(t− 1) andP (t) into B(t)
if (local migration condition)
then migratebt

j to B(t) locally
end
store the initial value of Q-bit inducing the best result into[αb βb]T

end

Figure 4.7: First-phase QEA.
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Figure 4.8: Relations between variables for the first-phase QEA, when the popu-
lation size, the local group size, and the number of observations are 6, 3, and 3,
respectively.

TPQEA has two procedures as shown in Figure 4.6. In the first phase as shown

in Figure 4.7, a promising initial value is searched and stored into[αb βb]T . The

first phase is similar to the standard procedure of QEA except the followings:

i) The ‘initialize Q(t)’ step is different. In this step, each local group has a

different value of Q-bit from other local groups to explore a different search space

each. In thegth local group, the initial value of Q-bit can be assigned as


 αg

βg


 =




√
(1−2δ)
Ng−1 g + δ√

1− (1−2δ)
Ng−1 g + δ


 , (4.7)

whereNg is the number of local groups, andδ, 0 < δ ¿ 1, is the minimum

probability of the state 1 (or 0). Equation (4.7) assigns a probability of each group

dividing an interval[δ, 1− δ] into Ng equal parts.

To guarantee the homogeneity of each group, the best solutionb is not used

and the global migration process is removed from the standard structure of QEA.

For example, the relations between variables are shown in Figure 4.8 when the pop-

ulation size, the local group size, and the number of observations are 6, 3, and 3,
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Procedure second-phase QEA (phase II)
begin

initialize Q(t) using[αb βb]T

makeP (t) by observing the states ofQ(t)
evaluateP (t)
store the best solutions amongP (t) into B(t)
while (not termination-condition)do
begin

t ← t + 1
makeP (t) by observing the states ofQ(t− 1)
evaluateP (t)
updateQ(t) using Q-gates
store the best solutions amongB(t− 1) andP (t) into B(t)
store the best solutionb amongB(t)
if (global migration condition)
then migrateb to B(t) globally
else if(local migration condition)
then migratebt

j in B(t) to B(t) locally
end

end

Figure 4.9: Second-phase QEA.

respectively.

ii) The condition of (3.19) (or (4.4)) can be used as a termination condition for

the first phase. However, if faster transition from the first phase to the second phase

is required, the termination condition of (3.20) (or (4.5)) can be used for the first

phase.

iii) At the end of the first phase, a process is added to store the initial value of

Q-bit inducing the best result into[αb βb]T .

Figure 4.9 depicts the second phase of TPQEA. It is almost the same as the pro-

cedure of QEA, except that time initialization ‘t ← 0’ is removed and the ‘initialize

Q(t)’ step shall use the initial value of Q-bit, i.e.[αb βb]T , obtained from the first
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Figure 4.10: 5-bit trap.

phase.

Let us consider the concatenated 5-bit traps as

ftrap(x) =
Ntrap−1∑

i=0

trap(x5i+1, x5i+2, x5i+3, x5i+4, x5i+5),

whereNtrap is the number of traps and

trap(x) =





4− ones(x) , if ones(x) ≤ 4

5 , if ones(x) = 5.

To maximizeftrap, the individuals should be able to escape from the 5-bit traps,

at (0, 0, 0, 0, 0), as shown in Figure 4.10. Table 4.3 shows the results of QEA and

TPQEA for the concatenated 5-bit traps withNtrap = 20. The global maximum

value offtrap is 100 when all the 100 bits are ones. While QEA fell into the trap

point (0, 0, 0, 0, 0) in 15 traps on an average, TPQEA did not fall into the traps at

all. In particular, the average number of generations of TPQEA was smaller than

QEA’s, although TPQEA has two phases. However, it should be noted that TPQEA

may need a larger number of generations to find the best solution for a particular

problem as compared to QEA’s, if the best solution is included in the search space
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QEA TPQEA

best 90 100
mean 85.033 100

ftrap worst 81 100
σ 1.722 0
t 218 84

Table 4.3: Experimental results of the concatenated 5-bit traps withNtrap = 20.
The population size was 15, the global migration period 100, the local group size
3, and the number of runs 30. The termination condition of (4.4) was used with
γ = 0.99. γ andδ for the first phase of TPQEA were0.9 and0.05, respectively.ε
of theHε gate was0.01. σ andt represent the standard deviation and the average
number of generations, respectively.

with ones-number distance 0 from the initial search space defined with the initial

value of Q-bit,[ 1√
2

1√
2
]T .

4.4 Summary

In this chapter, the structure as well as some basic issues of QEA were studied

to improve its performance. In the basic QEA, the initial Q-bit was set to
(

1√
2
, 1√

2

)
.

However, since the initial values could influence the performance of QEA, the ef-

fects of changing the initial values of Q-bits were investigated. A modified Q-gate

of the rotation gate,Hε gate which is suitable for a class of numerical optimization

problems with many local optima, was proposed that provides a scheme to escape

from local optima. And a two-phase QEA (TPQEA) scheme was also proposed

for a class of optimization problems with the global optimum which is present in

the search space with larger ones-number distance from randomly generated search

space. In particular, the experimental results of Schwefel function and the con-

catenated 5-bit traps showed the effectiveness and applicability of theHε gate and

TPQEA, respectively.
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5. Experiments

In this chapter, several numerical and combinatorial optimization problems are

discussed to demonstrate the effectiveness and applicability of QEA.

5.1 Numerical optimization

5.1.1 Rotation andHε gates

The representation of real number may be more suitable for numerical opti-

mization than that of binary string. Nevertheless, the six numerical optimization

functions of Sphere, Ackley, Griewank, Rastrigin, Schwefel, and Rosenbrock (see

Appendix A.2) were considered to demonstrate the effectiveness of QEA to a class

of numerical optimization.

To minimize the six functions, QEAs were tested using the parameter settings

as given in Table 5.1. And the global migration was not used. Considering the

resolutions of variables, the numbers of the Q-bits for the six functions were set

to 18, 18, 21, 17, 22, and 18 bits (per variable), respectively. Gray coding was

used to convert from binary string to real value. For the comparison purpose, the

termination condition with the maximum number of generations was used, since the

experiments referred from [80] were tested with a fixed number of generations. The

rotation angles ofΘ were set to[0 0 p 0n 0 0 0]T as in Section 3.4, wherep and|n|
(absolute value ofn) were set to0.06π, 0.06π, 0.06π, 0.04π, 0.04π, and0.04π for

the six functions, respectively.

The results taken from the reference [80] were tested using classical EP (CEP)
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QEA with QEA with
Hε gate Rotation gate

Population size 100 100
Number of observations 1 1

Local group size 100 100
ε for Hε gate 0.01 (0)

Termination condition MAX GEN MAX GEN

Table 5.1: Parameter settings of QEAs for the experiments on the numerical opti-
mization functions (A.1)-(A.6).

and fast EP (FEP). The population size was selected to be 100 for each experiment.

According to the reference, FEP provided better solutions than CEP.

Table 5.2 shows the results of the numerical functions (A.1)-(A.6) for QEA with

theHε gate, QEA with the rotation gate, FEP, and CEP. In the cases offSphere and

fAckley which are relatively simple functions compared to the other functions, QEAs

and EP had almost the same results, although the results of QEA with the rotation

gate were slightly better than the others’. However, in the cases offGriewank and

fRastrigin which have many local optima, QEA with theHε gate and FEP had better

results than the others. In particular, in the case offSchwefel, only QEA with the

Hε gate found the global solution. In the case offRosenbrock, no algorithm found

the global solution on an average. The reason why QEAs could not find the global

solution offRosenbrock is described in Appendix A.3.

Figures 5.1-5.5 show the comparison between QEA with theHε gate and QEA

with the rotation gate on Sphere, Ackley, Griewank, Rastrigin, and Schwefel func-

tions. In the results of Figures 5.1 and 5.2, the best results of QEA with the rotation

gate were better compared to those of QEA with theHε gate after the generation

reached 800. In the results of Figures 5.3, 5.4, and 5.5, however, it should be noted

that the best results of QEA with theHε gate were significantly better compared to

those of QEA with the rotation gate, although the average results of QEA with the
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QEAs EP
QEA w/ Hε QEA w/ R FEP CEP

(100) (100) (100) (100)

fSphere m. 1.8× 10−4 4.3× 10−6 5.7× 10−4 2.2× 10−4

t = 1500 σ 1.3× 10−4 0 1.3× 10−4 5.9× 10−4

fAckley m. 2.5× 10−3 4.8× 10−4 1.8× 10−2 9.2
t = 1500 σ 8.1× 10−4 0 2.1× 10−3 2.8

fGriewank m. 3.6× 10−2 5.8× 10−2 1.6× 10−2 8.6× 10−2

t = 2000 σ 3.2× 10−2 7.5× 10−2 2.2× 10−2 0.12

fRastrigin m. 3.9× 10−2 18.7 4.6× 10−2 89.0
t = 5000 σ 1.9× 10−1 7.4 1.2× 10−2 23.1

fSchwefel m. 3.8× 10−4 216.04 14.987 4652.3
t = 9000 σ 3.0× 10−9 163.8 52.6 634.5

fRosenbrock m. 11.73 7.18 5.06 6.17
t = 20000 σ 18.36 6.77 5.87 13.61

Table 5.2: Experimental results of the six numerical optimization functions of (A.1)-
(A.6). The results of EP were referred from [80]. The number of runs was 50. The
parenthesized values are the population sizes.m., σ, andt represent the mean best,
the standard deviation, and the maximum number of generations, respectively.
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Figure 5.1: Comparison between QEA with theHε gate and QEA with the rotation
gate on Sphere function. The parameter values were set to the same as shown in
Table 5.1. The vertical axis for (a) and (b) shows the function value, the vertical
axis for (c) shows the value ofCav, and the horizontal axis represents the number
of generations. (a) shows the best result, (b) the average result, and (c) the average
Q-bit convergence. All results were averaged over 50 runs.
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Figure 5.2: Comparison between QEA with theHε gate and QEA with the rotation
gate on Ackley function. The parameter values were set to the same as shown in
Table 5.1. The vertical axis for (a) and (b) shows the function value, the vertical
axis for (c) shows the value ofCav, and the horizontal axis represents the number
of generations. (a) shows the best result, (b) the average result, and (c) the average
Q-bit convergence. All results were averaged over 50 runs.
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Figure 5.3: Comparison between QEA with theHε gate and QEA with the rotation
gate on Griewank function. The parameter values were set to the same as shown
in Table 5.1. The vertical axis for (a) and (b) shows the function value, the vertical
axis for (c) shows the value ofCav, and the horizontal axis represents the number
of generations. (a) shows the best result, (b) the average result, and (c) the average
Q-bit convergence. All results were averaged over 50 runs.
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Figure 5.4: Comparison between QEA with theHε gate and QEA with the rotation
gate on Rastrigin function. The parameter values were set to the same as shown in
Table 5.1. The vertical axis for (a) and (b) shows the function value, the vertical
axis for (c) shows the value ofCav, and the horizontal axis represents the number
of generations. (a) shows the best result, (b) the average result, and (c) the average
Q-bit convergence. All results were averaged over 50 runs.
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Figure 5.5: Comparison between QEA with theHε gate and QEA with the rotation
gate on Schwefel function. The parameter values were set to the same as shown in
Table 5.1. The vertical axis for (a) and (b) shows the function value, the vertical
axis for (c) shows the value ofCav, and the horizontal axis represents the number
of generations. (a) shows the best result, (b) the average result, and (c) the average
Q-bit convergence. All results were averaged over 50 runs.
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Hε gate were somewhat worse compared to those of QEA with the rotation gate.

The results of Griewank show, in particular, that the best results of QEA with the

Hε gate were better, although the average results of QEA with theHε gate were

worse. The reason behind this type of result is theHε gate, that prevents each Q-bit

converging to the final state (0 or 1). It is worthwhile to mention here that the results

of the average Q-bit convergence show that the final values for QEAs with theHε

and rotation gates converge to(1 − 2ε) and1, respectively. Since the converged

entropy of QEA with theHε gate is a nonzero value of (4.3), the converged Q-bit

individual still includes various binary solutions. It means that the solutions selected

as a population are obtained from a little bit wide area in the search space. From

this reason, the average results of QEA with theHε gate did not converge below a

certain value.

It is also worthwhile to mention that the QEA with the rotation gate is recom-

mended for a class of unimodal functions which have no local optimum, and the

QEA with theHε gate is recommended for a class of multimodal functions which

have many local optima.

5.1.2 First hitting time

Three De Jong functions (see Appendix A.2) were considered to verify the per-

formance of QEA with a single individual. The theoretical analysis of QEA with a

single individual for theONEMAX problem was already discussed in Section 3.6.

For comparison purpose, simulated annealing (SA) was considered. The procedure

SA is described in Appendix B.1. As a performance measure of the algorithms, we

picked up the best search cost for the first hitting time over 50 runs. The number

of times the fitness function was called was regarded as the search cost, since the

evaluation of fitness function generally consumes of the most time compared to any

other function. The number of bits for the three De Jong functions was set to 25 bits
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fDeJong1 fDeJong2 fDeJong3

m. 31544.9 9196.0 3802.1
QEA σ 15944.0 1764.2 797.8

(0.0001π) r. 50 / 50 50 / 50 50 / 50
m. 122712.1 4117.2 1229.9

QEA σ 94058.7 3962.7 344.5
(0.0005π) r. 50 / 50 50 / 50 50 / 50

m. 141143.2 7306.8 894.7
QEA σ 90850.7 16085.5 248.4

(0.001π) r. 50 / 50 50 / 50 50 / 50

m. 299097.1 1705.0 1279.4
SA σ 145643.4 826.3 782.0

(0.01) r. 50 / 50 50 / 50 50 / 50
m. 185057.8 1446.9 1207.5∗

SA σ 71646.6 682.3 916.2∗

(0.1) r. 50 / 50 50 / 50 46 / 50
m. 193786.4 1446.8 706.2∗

SA σ 64214.7 637.0 409.7∗

(1.0) r. 50 / 50 50 / 50 21 / 50

Table 5.3: Experimental results of the three De Jong functions (A.7)-(A.9). Each
parenthesized value of QEA is the rotation anglep (or |n|) and that of SA is the
value of cooling parameterk for its temperature scheduler. The number of runs was
50. m., σ, andr. represent the mean best of search cost, the standard deviation
of search cost, and the success rate, respectively. The values marked with∗ were
obtained excluding the failure cases for which search cost was greater than106.

(per variable). The value ofε for theHε gate was set to0.01π.

Table 5.3 shows the experimental results for the three De Jong functions (A.7)-

(A.9). In the results offDeJong1 andfDeJong3, QEA with a single individual yielded

better results compared to SA. In the results offDeJong2, which is relatively simple

function compared to the other functions, SA performed better compared to QEA

with a single individual. In particular, it should be noted that the results offDeJong3

showed that SA had several failure cases of which search cost was greater than106.

The reason is that De Jong function (3) has many discontinuous valleys as shown
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in Figure A.2 (c) and SA may fall into one such valley. From these results, it is

worthwhile to mention that QEA with a single individual performs better although

the search space is distorted and it has many discontinuous valleys.

5.2 Combinatorial optimization

The experimental results of the knapsack problems with the average knapsack

capacity were already discussed in Section 3.3. In this section, the knapsack prob-

lem with the restrictive knapsack capacity was considered for a class of combinato-

rial optimization problem to demonstrate the applicability of TPQEA. Comparison

was made with the experimental results of QEA. The random repair method used

in Section 3.3 was considered for handling the constraint of the knapsack capacity

to compare their performance, although the greedy repair method guaranteed bet-

ter solutions for the restrictive knapsack problem. Table 5.4 shows the parameter

settings of TPQEA and QEA. The parameters of TPQEA were set to the same set

of values as those of QEA except the additional parameters for the first phase of

TPQEA. The rotation angle ofp (or |n|) for Q-gate was set to0.01π.

Table 5.5 shows the experimental results of the knapsack problems with 100,

250, and 500 items. As the table shows, TPQEA yielded much better results com-

pared to QEA. Moveover, the average elapsed number of generations of TPQEA is

smaller than that of QEA. More specifically, the convergence speed of TPQEA is

1.8, 2.9, and 4.0 times faster than that of QEA for 100, 250, and 500 items, respec-

tively. The results of the standard deviations show that TPQEA is more robust than

QEA for finding solutions.

Figure 5.6 shows clearly that TPQEA performs significantly better than QEA

in terms of convergence speed and the amount of profit. The transition point from

the first phase to the second phase can be found out easily. After the transition, the

rising slope of TPQEA is steeper than that of QEA. In particular, the tendency of
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QEA TPQEA
Phase I Phase II

Population size 15 15
Number of observations 1 1

Local group size 3 3
Global migration period 100 - 100
Termination condition:γ 0.99 0.99 0.99

Equation of the termination condition (3.19) (3.20) (3.19)
Minimum probability of (4.7):δ - 0.01 -

Table 5.4: Parameter settings of QEA and TPQEA for the experiments on the re-
strictive knapsack problem. ‘-’ means that the parameter is not needed.

QEA TPQEA

best 69.998 69.999
mean 67.819 68.467

100 worst 59.995 64.969
σ 3.774 2.279
t 1463 804

best 94.998 94.997
mean 87.484 90.122

250 worst 74.991 84.674
σ 4.604 3.551
t 2680 929

best 89.998 94.968
mean 81.788 85.309

500 worst 69.983 74.983
σ 5.082 4.998
t 4624 1165

Table 5.5: Experimental results of the knapsack problem with the restrictive knap-
sack capacity,C = 20, for 100, 250, and 500 items, respectively. The parameter
values were set to the same as shown in Table 5.4, the number of runs was selected
to be 30.σ andt represent the standard deviation and the average number of gener-
ations for termination, respectively.
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Figure 5.6: Comparison of TPQEA and QEA on the restrictive knapsack problem.
The parameter values were set to the same as shown in Table 5.4. However, regard-
less of the termination criteria, the results from 1 to 1,500 generations were plotted.
The vertical axis shows the profit value of knapsack, and the horizontal axis repre-
sents the number of generations. The best profit values and the average profit values
were averaged over 30 runs.

106



convergence rate is shown clearly in the results of the mean of average profits of

population. After the transition, all the population converge to better solutions at a

faster rate.

5.3 Summary

In this chapter, several numerical and combinatorial optimization problems were

discussed to demonstrate the effectiveness and applicability of QEA. From the re-

sults of the six numerical optimization functions, the QEA with the rotation gate

is recommended for a class of unimodal functions which have no local optimum,

and the QEA with theHε gate is recommended for a class of multimodal functions

which have many local optima. From the results of the three De Jong functions,

the performance of QEA with a single individual was proved to be performed well

although the search space is not simple. The experimental results of the restric-

tive knapsack problem also showed that TPQEA performed much better than QEA

for a class of optimization problems with the global optimum which is present in

the search space with larger ones-number distance from randomly generated search

space.
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6. Conclusions and Future Works

This thesis has proposed a novel quantum-inspired evolutionary algorithm (QEA)

inspired by the concept of quantum computing. A Q-bit individual is defined to be a

string of Q-bits for the probabilistic representation. To introduce the variation to the

Q-bit individual, a new Q-gate variation operator is designed. The proposed QEA

is characterized by the Q-bit representation for generating the population diversity,

the observation process for producing a binary string from the Q-bit individual, the

update process for driving the individuals toward better solutions by the Q-gate, the

migration process for more variation of the probabilities of the Q-bit individuals,

and the termination condition which can be set by the convergence of the Q-bit

individuals.

The knapsack problem is considered to be an application appropriate enough to

investigate the performance of QEA. The experimental results show that QEA per-

formed quite well even with only one Q-bit individual. The characteristics of QEA

could be verified by the simple knapsack problem with only 10 items. The results

demonstrate the effectiveness and applicability of QEA to a class of combinatorial

optimization problems.

The theoretical analysis of the QEA algorithm for theONEMAX problem shows

that QEA can maintain the balance between exploration and exploitation.

The definition of the Q-bit convergence could provide a meaningful termina-

tion criterion. By examining the effects of changing the values of the parameters

of QEA, some guidance to the parameter settings could be introduced. In particu-

lar, some research issues for QEA such as the analysis of changing the initial val-

ues of Q-bits, a novel variation operatorHε gate, and a two-phase QEA (TPQEA)
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scheme are addressed to improve the performance of QEA. The experimental re-

sults of Schwefel function and the concatenated 5-bit traps show the effectiveness

and applicability of theHε gate and TPQEA, respectively.

The results from several numerical optimization problems verify that QEA can

be applied to a class of numerical as well as combinatorial optimization problems.

In fact, the results have broken the conventional belief that a binary representation is

not suitable for numerical optimization. These results extend the applicability and

effectiveness of QEA for solving a general class of optimization problems.

Future research includes studying the dependencies among Q-bits as inspired by

the concept of quantum entanglement to handle the dependencies among variables.

For example, Rosenbrock function has 30 variables which have a strong dependency

on each other. In this case, it is not easy to find the global optimum by using only a

fitness function. A technique for handling the dependencies among variables will be

useful to find the global optimum, although it may reduce the entropy of the search

space. The technique can be implemented by considering the dependencies among

Q-bits.
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Appendix A. Optimization Problems

A.1 Knapsack problem

Knapsack problem which is a well-known combinatorial optimization problem

is included in a class of NP-hard problems [81]. The knapsack problem can be

described as selecting a subset of items from among various items so that it is most

profitable, given that the knapsack has limited capacity. The 0-1 knapsack problem

is described as follows: given a set ofm items and a knapsack, select a subset of the

items to maximize the profitf(x):

f(x) =
m∑

i=1

pixi,

subject to the condition
m∑

i=1

wixi ≤ C,

wherex = (x1 · · ·xm), xi is 0 or 1, pi is the profit of itemi, wi is the weight of

item i, andC is the capacity of the knapsack. Ifxi = 1, theith item is selected for

the knapsack.

There are two types of knapsack capacity [68]:

i) average knapsack capacity

C =
1
2

m∑

i=1

wi

and ii) restrictive knapsack capacityC = 2v.
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A.2 Numerical optimization problems

The following numerical optimization functions were considered in this thesis.

Sphere function: Minimize

f(x) =
N∑

i=1

x2
i , (A.1)

where−100.0 ≤ xi ≤ 100.0 andN = 30. The global minimum value is0.0 at

x = (0, 0, · · · , 0).

Ackley function: Minimize

f(x) = −20 exp


−0.2

√√√√ 1
N

N∑

i=1

x2
i


− exp

(
1
N

N∑

i=1

cos(2πxi)

)
+ 20 + e,(A.2)

where−32.0 ≤ xi ≤ 32.0 andN = 30. The global minimum value is0.0 at

x = (0, 0, · · · , 0).

Griewank function: Minimize

f(x) =
1

4000

N∑

i=1

x2
i −

N∏

i=1

cos
(

xi√
i

)
+ 1, (A.3)

where−600.0 ≤ xi ≤ 600.0 andN = 30. The global minimum value is0.0 at

x = (0, 0, · · · , 0).

Rastrigin function: Minimize

f(x) = 10N +
N∑

i=1

(
x2

i − 10 cos(2πxi)
)
, (A.4)

where−5.12 ≤ xi ≤ 5.12 andN = 30. The global minimum value is0.0 at

x = (0, 0, · · · , 0).
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Schwefel function:Minimize

f(x) = 418.9829N −
N∑

i=1

xi sin(
√
|xi|), (A.5)

where−500.0 ≤ xi ≤ 500.0 andN = 30. The global minimum value is0.0 at

x = (−420.9687,−420.9687, · · · ,−420.9687).

Rosenbrock function: Minimize

f(x) =
N−1∑

i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

)
, (A.6)

where−30.0 ≤ xi ≤ 30.0 andN = 30. The global minimum value is0.0 at

x = (1, 1, · · · , 1).

De Jong function (1):Minimize

f(x) = 100(x2
1 − x2)2 + (1− x1)2, (A.7)

where−2.048 ≤ xi ≤ 2.048. The global minimum value is0.0 at(x1, x2) = (1, 1).

De Jong function (2):Minimize

f(x) =
5∑

i=1

integer(xi), (A.8)

where−5.12 ≤ xi ≤ 5.12. The global minimum value is−30 for all −5.12 ≤
xi < −5.0.

De Jong function (3):Minimize

f(x) =
1

1
K +

∑25
j=1 g−1

j (x1, x2)
, where gj(x1, x2) = cj +

2∑

i=1

(xi − aij)6, (A.9)
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Figure A.1: Numerical optimization functions of (A.1)-(A.6). Each of them has 30
variables. In these figures, however, only two variables were considered to plot their
shapes approximately.
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Figure A.2: De Jong functions of (A.7)-(A.9).

where−65.536 ≤ xi ≤ 65.536, K = 500, cj = j, and

[aij ] =


 −32 −16 0 16 32 −32 −16 · · · 0 16 32

−32 −32 −32 −32 −32 −16 −16 · · · 32 32 32


 .

The global minimum value is0.998 at (x1, x2) = (−32,−32).

Figures A.1 and A.2 show their shapes approximately.
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A.3 Rosenbrock function

As shown in Table 5.2, no algorithm could find out the global minimum of

Rosenbrock function, although the maximum number of generations was selected

to be 20,000. In the experiments, we could find thatx30 did not converge to the

optimal value1 in most of the experiments. In particular, the error ofx30 induced

the error ofx29 and the error ofxi+1 also induced the error ofxi.

Let us see the Rosenbrock function with respect to each pair of(xi, xi+1):

f(xi, xi+1) = 100(xi+1 − x2
i )

2 + (xi − 1)2

= fe(xi, xi+1) + fs(xi). (A.10)

The function off(xi, xi+1) can be divided into two functions,fe(xi, xi+1) and

fs(xi) as shown in (A.10). The optimal value ofxi is determined byfs(xi). How-

ever, since the coefficient of(xi+1 − x2
i )

2 in fe(xi, xi+1) is too big,fs(xi) is negli-

gible. From this reason, eachxi converges not to 1, but to
√

xi+1.
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Appendix B. Iterative Search Algorithms

B.1 Simulated annealing

Simulated annealing method is quite similar to the hill climbing method [79].

Instead of picking the best move, it picks a random move. If the move actually

improves the situation, it is always executed. Otherwise, the algorithm makes the

move with some probability less than 1. The probability decreases exponentially as

time advances.

Figure B.1 shows the procedure SA which is a specific version for binary rep-

resentation. In this figure,xc is a current binary string,xn a new binary string,T

the current temperature,t the time step,s(T, t) the scheduler for the temperatureT ,

f(·) the fitness function of the problem, andrandom[0, 1] a random number from

the range[0, 1).

There are several techniques for implementing the temperature schedulers(T, t).

In this thesis, the following technique was used for implementing the scheduler

s(T, t):

s(T, t) =
1

k(t + 1)
, (B.1)

wherek is the parameter for cooling temperature.
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Procedure SA
begin

t ← 0
initialize temperatureT
select a current stringxc at random
while (T > 0) do
begin

t ← t + 1
T ← s(T, t)
select a new stringxn

in the neighborhood ofxc

by flipping a single bit ofxc

∆E ← f(xn)− f(xc)
if (∆E > 0)
then xc ← xn

else if(exp∆E/T > random[0, 1])
then xc ← xn

end
end

Figure B.1: Simulated annealing.
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