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1. Introduction

Quantum mechanical computers were proposed in the early

1980’s [1] and the description of quantum mechanical com-

puters was formalized in the late 1980’s [2]. Many efforts on

quantum computers have progressed actively since the early

1990’s because these computers were shown to be more pow-

erful than classical computers on various specialized prob-

lems. There are well-known quantum algorithms such as

Shor’s quantum factoring algorithm [3], [4] and Grover’s

database search algorithm [5], [6]. Research on merging

evolutionary computing and quantum computing has been

started by some researchers since late 1990’s. They can

be classified into two fields. One concentrates on generat-

ing new quantum algorithms using automatic programming

techniques such as genetic programming [7]. The other con-

centrates on quantum-inspired evolutionary computing for a

classical computer, a branch of study on evolutionary com-

puting that is characterized by certain principles of quantum

mechanics such as standing waves, interference, coherence,

etc. In [8] and [9], the concept of interference was included

in a crossover operator.

This paper presents quantum-inspired evolutionary algo-

rithm (QEA), which is based on the concept and principles

of quantum computing such as a quantum bit and superpo-

sition of states. In [10], [11], and [12], the basic concept of

QEA was introduced, its applicability to the parallel algo-

rithm was verified, and its characteristics were analyzed, re-

spectively. Like other evolutionary algorithms, QEA is also

characterized by the representation of the individual, the

evaluation function and the population dynamics. However,

instead of binary, numeric, or symbolic representation, QEA

uses a Q-bit, defined as the smallest unit of information, for

the probabilistic representation and a Q-bit individual as a

string of Q-bits. It should be noted that although QEA is

based on the concept of quantum computing, QEA is not a

quantum algorithm, but a novel evolutionary algorithm for

a classical computer.

This paper is organized as follows. Section 2 introduces

briefly the basics of quantum computing. Section 3 describes

QEA. Section 4 analyzes the characteristics of QEA. Con-

cluding remarks follow in Section 5.

2. Basics of Quantum Computing

The smallest unit of information stored in a two-state quan-

tum computer is called a quantum bit or qubit [13]. A qubit

may be in the ‘1’ state, in the ‘0’ state, or in any superpo-

sition of the two. The state of a qubit can be represented

as

|Ψ〉 = α|0〉 + β|1〉, (1)

where α and β are complex numbers that specify the proba-

bility amplitudes of the corresponding states. |α|2 gives the

probability that the qubit will be found in the ‘0’ state and

|β|2 gives the probability that the qubit will be found in the

‘1’ state. Normalization of the state to unity guarantees

|α|2 + |β|2 = 1. (2)

The state of a qubit can be changed by the operation with

a quantum gate. A quantum gate is a reversible gate and

can be represented as a unitary operator, U acting on the

qubit basis states satisfying U†U = UU†, where U† is the

hermitian adjoint of U . There are several quantum gates,

such as NOT gate, Controlled NOT gate, Rotation gate,

Hadamard gate, etc.[14]. NOT operation is shown as follows:

|0〉 −→ |1〉
|1〉 −→ |0〉

In Controlled NOT gate, the NOT operation is only op-

erative when the state of the controlled qubit is ‘1’ state.

Hadamard operation is shown in the following.

|0〉 −→ |0〉 + |1〉√
2

|1〉 −→ |0〉 − |1〉√
2

If there is a system of m-qubits, the system can represent 2m

states at the same time. However, in the act of observing a

quantum state, it collapses to a single state.

3. Quantum-inspired Evolutionary Algorithm

Inspired by the concept of quantum computing, QEA was

designed with a novel Q-bit representation, a Q-gate as a

variation operator, and an observation process.



3.1. Representation

A number of different representations can be used to encode

the solutions onto individuals in evolutionary computation.

The representations can be classified broadly as: binary, nu-

meric, and symbolic ones[15]. QEA uses a new representa-

tion, called a Q-bit, for the probabilistic representation that

is based on the concept of qubits, and a Q-bit individual as

a string of Q-bits. A Q-bit is defined as the smallest unit of

information in QEA, which is defined with a pair of numbers,

(α, β), as

[
α

β

]
,

where |α|2 + |β|2 = 1. |α|2 gives the probability that the Q-

bit will be found in the ‘0’ state and |β|2 gives the probability

that the Q-bit will be found in the ‘1’ state. A Q-bit may be

in the ‘1’ state, in the ‘0’ state, or in a linear superposition of

the two. A Q-bit individual as a string of m Q-bits is defined

as [
α1

β1

∣∣∣∣ α2

β2

∣∣∣∣ · · ·
· · ·

∣∣∣∣ αm

βm

]
, (3)

where |αi|2 + |βi|2 = 1, i = 1, 2, · · · , m.

Q-bit representation has the advantage that it is able to rep-

resent a linear superposition of states. If there is, for in-

stance, a three-Q-bit system with three pairs of amplitudes

such as [
1√
2

1√
2

∣∣∣∣
1√
2

−1√
2

∣∣∣∣
1
2√
3

2

]
, (4)

the states of the system can be represented as

1

4
|000〉 +

√
3

4
|001〉 − 1

4
|010〉 −

√
3

4
|011〉 (5)

+
1

4
|100〉 +

√
3

4
|101〉 − 1

4
|110〉 −

√
3

4
|111〉.

The above result means that the probabilities to represent

the states |000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, and

|111〉 are system of (4) contains information of eight states.

Evolutionary computing with Q-bit representation has a bet-

ter characteristic of population diversity than other represen-

tations, since it can represent linear superposition of states

probabilistically. Only one Q-bit individual such as (4) is

enough to represent eight states, but in binary representa-

tion at least eight strings, (000), (001), (010), (011), (100),

(101), (110), and (111) are needed.

3.2. QEA

The structure of QEA is described in the following.

procedure QEA

begin

t ← 0

i) initialize Q(t)

ii) make P (t) by observing the states of Q(t)

iii) evaluate P (t)

iv) store the best solutions among P (t) into b

while (not termination-condition) do

begin

t ← t + 1

v) make P (t) by observing the states of Q(t − 1)

vi) evaluate P (t)

vii) update Q(t) using Q-gates

viii) store the best solutions among P (t) into b

end

end

QEA is a probabilistic algorithm like other evolutionary al-

gorithms. QEA, however, maintains a population of Q-bit

individuals, Q(t) = {qt
1,q

t
2, · · · ,qt

n} at generation t, where n

is the size of population, and qt
j is a Q-bit individual defined

as

qt
j =

[
αt

j1

βt
j1

∣∣∣∣ αt
j2

βt
j2

∣∣∣∣ · · ·
· · ·

∣∣∣∣ αt
jm

βt
jm

]
, (6)

where m is the number of Q-bits, i.e., the string length of

the Q-bit individual, and j = 1, 2, · · · , n. The procedure of

QEA is described in the following.

i) In the step of ‘initialize Q(t),’ α0
i and β0

i , i = 1, 2, · · · , m,

of all q0
j = qt

j |t=0, j = 1, 2, · · · , n, are initialized with 1√
2
.

It means that one Q-bit individual, q0
j represents the linear

superposition of all possible states with the same probability:

|Ψq0
j
〉 =

2m∑
k=1

1√
2m

|Xk〉, (7)

where Xk is the k-th state represented by the binary string

(x1x2 · · ·xm), where xi, i = 1, 2, · · · , m, is either 0 or 1 ac-

cording to the probability of either |α0
i |2 or |β0

i |2, respec-

tively.

ii) This step makes binary solutions in P (0) by observing the

states of Q(0), where P (0) = {x0
1,x

0
2, · · · ,x0

n} at generation

t = 0. One binary solution, x0
j , j = 1, 2, · · · , n, is a binary

string of length m, which is formed by selecting either 0 or

1 for each bit using the probability, either |α0
i |2 or |β0

i |2,
i = 1, 2, · · · , m, of q0

j , respectively.

iii) Each binary solution x0
j is evaluated to give a level of its

fitness.

iv) The initial best solutions are then selected among the

binary solutions, P (0), and stored into b.

v, vi) In the while loop, binary solutions in P (t) are formed

by observing the states of Q(t − 1) as in step ii), and each

binary solution is evaluated for the fitness value.

vii) In this step, Q-bit individuals in Q(t) are updated by

applying Q-gates defined as a variation operator of QEA, by

which operation the updated Q-bit should satisfy the nor-

malization condition, |α′|2 + |β′|2 = 1, where α′ and β′ are

the values of the updated Q-bit. The following rotation gate

is used as a Q-gate in QEA, such as

U(∆θi) =

[
cos(∆θi) − sin(∆θi)

sin(∆θi) cos(∆θi)

]
, (8)

where ∆θi, i = 1, 2, · · · , m, is a rotation angle of each Q-bit

towards either 0 or 1 state depending on its sign. Figure

1 shows the polar plot of the rotation gate. ∆θi should be

designed in compliance with the application problem. Table

1 can be used as an angle parameters for the rotation gate.
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Fig. 1. Polar plot of the rotation gate

xi bi f(x) ≥ f(b) ∆θi

0 0 false θ1

0 0 true θ2

0 1 false θ3

0 1 true θ4

1 0 false θ5

1 0 true θ6

1 1 false θ7

1 1 true θ8

Table 1. Lookup table of ∆θi, where f(·) is the fitness

function, and bi and xi are the i-th bits of the best solution

b and the binary solution x, respectively.

The magnitude of ∆θi has an effect on the speed of conver-

gence, but if it is too big, the solutions may diverge or have

a premature convergence to a local optimum. The sign of

∆θi determines the direction of convergence.

viii) If the best solution among P (t) is fitter than the stored

best solution b, the stored solution b is replaced by the new

one.

The binary solutions in P (t) are discarded at the end of the

loop because P (t + 1) will be produced by observing the

updated Q(t) in step vii). Until the termination condition is

satisfied, QEA is running in the while loop.

4. Characteristics of QEA

To investigate the characteristics of QEA, a simple knapsack

problem with only 10 items is considered. The knapsack

problem can be described as selecting, from among various

items, those items which are most profitable, given that the

knapsack has limited capacity. The 0-1 knapsack problem is

described as follows: given a set of m items and a knapsack,

select a subset of the items to maximize the profit f(x):

f(x) =

m∑
i=1

pixi,

subject to
m∑

i=1

wixi ≤ C,

where x = (x1 · · ·xm), xi is 0 or 1, pi is the profit of item i, wi

is the weight of item i, and C is the capacity of the knapsack.

If xi = 1, the i-th item is selected for the knapsack.
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(c) Uncorrelated data

Fig. 2. Profit values of 1024 cases in the knapsack problem

with 10 items obtained by a simple calculation. The

vertical axis is the profit values of the knapsack, and the

horizontal axis is the number of 1024 cases selected as

a subset from 10 items. The best profit satisfying the

capacity constraint is marked with O.

In our experiments, strongly correlated, weakly correlated,

and uncorrelated sets of data were considered, and the av-

erage knapsack capacity was used. While selecting a subset

from 10 items, there exist 210 cases. By a simple calculation,

we could obtain the profit values of 1024 cases in the knap-

sack problem as shown in Figure 2. The best profit satisfying

the capacity constraint was (a) 62.192938 at the 127th case,

(b) 46.263497 at the 557th case, and (c) 37.134556 at the

415th case.

Now, to investigate the characteristics of QEA, a single

Q-bit individual was used. A rotation gate was used for

the Q-gate, and the parameter setting of Table 1 was

(0, 0, 0.01π, 0, −0.01π, 0, 0, 0). Figure 3 shows the prob-

abilities of 1024 solutions for the strongly correlated data

using the Q-bit individual at generations 10, 20, 30, 40, 50,

100, 200 and 300. Since all the possible solutions of the

Q-bit individual are initialized with the same probability as

described in (7), we have a probability of 0.001 ( 1√
210

2
= 1

210 )

for each solution which is shown in Figure 3 (a), (b), and (c)
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Fig. 3. Probabilities of all solutions for the strongly correlated data using a Q-bit individual. The vertical axis is the probability

of the solution, and the horizontal axis is the number of 1024 cases selected as a subset from 10 items.

as a horizontal line. It means that QEA initially starts with

a random search.

The result at generation 10 is worth mentioning as the prob-

abilities of 1024 solutions had a pattern similar to the profit

distribution of Figure 2 (a). This suggests that it may be

possible to use only one Q-bit individual to represent 1024

cases. At generation 20, solutions with larger probability ap-

peared. From generations 30 to 50, the probabilities of the

solutions with larger profits increased on a large scale. At

generation 100, however, all the peak values decreased ex-

cept for those with better solutions. The same feature was

obtained at generation 200. At generation 300, the prob-

ability of the best solution was over 0.9, and those of the
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Fig. 4. Probabilities of all solutions for the weakly correlated data using a Q-bit individual. The vertical axis is the probability

of the solution, and the horizontal axis is the number of 1024 cases selected as a subset from 10 items.
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Fig. 5. Probabilities of all solutions for the uncorrelated data using a Q-bit individual. The vertical axis is the probability of

the solution, and the horizontal axis is the number of 1024 cases selected as a subset from 10 items.

other solutions were around 0. This means that the Q-bit

individual had almost converged to the best solution.

The results above can be summarized in the following. Ini-

tially, QEA starts with a random search. At generation 10,

the distribution of the probabilities of all the solutions be-

comes similar to the profit distribution shown in Figure 2

(a). As the probabilities of the solutions with larger profits

increase, QEA starts a local search. Finally, the probability

of the best Q-bit individual converges to 1. This means that



QEA starts with a global search and switches automatically

to a local search because of its inherent probabilistic mech-

anism, which leads to a good balance between exploration

and exploitation.

As shown in Figure 4 and Figure 5, the results for the weakly

correlated and uncorrelated data also demonstrated the ef-

fectiveness and the applicability of QEA as the results for

the strongly correlated data did.

5. Conclusions

This paper has introduced a quantum-inspired evolutionary

algorithm (QEA), which is based on the concept and princi-

ples of quantum computing such as a quantum bit and the

superposition of states. The key ideas of QEA lie in the

concept of a Q-bit individual, defined as a string of Q-bits

for the probabilistic representation, and the operation of a

Q-gate, designed to introduce variation to the Q-bit individ-

ual. To investigate the characteristics of QEA, the knapsack

problem has been studied. The experimental results demon-

strate the effectiveness and applicability of QEA for this class

of combinatorial optimization problems.
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